Translation of the hepatitis C virus (HCV) RNA is initiated from a highly structured internal ribosomal entry site (IRES) in the 5' untranslated region (5' UTR) of the RNA genome. An important structural feature of the native RNA is an approximately 90 degrees helical bend localized to domain IIa that positions the apical loop of domain IIb of the IRES near the 40S ribosomal E-site to promote eIF2-GDP release, facilitating 80S ribosome assembly. We report here the NMR structure of a domain IIa construct in complex with a potent small-molecule inhibitor of HCV replication. Molecular dynamics refinement in explicit solvent and subsequent energetic analysis indicated that each inhibitor stereoisomer bound with comparable affinity and in an equivalent binding mode. The in silico analysis was substantiated by fluorescence-based assays showing that the relative binding free energies differed by only 0.7 kcal/mol. Binding of the inhibitor displaces key nucleotide residues within the bulge region, effecting a major conformational change that eliminates the bent RNA helical trajectory, providing a mechanism for the antiviral activity of this inhibitor class.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2867761PMC
http://dx.doi.org/10.1073/pnas.0911896107DOI Listing

Publication Analysis

Top Keywords

domain iia
12
rna
5
inhibitor-induced structural
4
structural change
4
change hcv
4
hcv ires
4
domain
4
ires domain
4
iia rna
4
rna translation
4

Similar Publications

DNA gyrase is a bacterial type IIA topoisomerase that can create temporary double-stranded DNA breaks to regulate DNA topology and an archetypical target of antibiotics. The widely used quinolone class of drugs use a water-metal ion bridge in interacting with the GyrA subunit of DNA gyrase. Zoliflodacin sits in the same pocket as quinolones but interacts with the GyrB subunit and also stabilizes lethal double-stranded DNA breaks.

View Article and Find Full Text PDF

Structural and Functional Insights into UDP-N-acetylglucosamine-enolpyruvate Reductase (MurB) from Brucella ovis.

Arch Biochem Biophys

January 2025

Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza, and GBsC (Unizar) join unit to CSIC, Zaragoza, Spain. Electronic address:

The peptidoglycan biosynthetic pathway involves a series of enzymatic reactions in which UDP-N-acetylglucosamine-enolpyruvate reductase (MurB) plays a crucial role in catalyzing the conversion of UDP-N-acetylglucosamine-enolpyruvate (UNAGEP) to UDP-N-acetylmuramic acid. This reaction relies on NADPH and FAD and, since MurB is not found in eukaryotes, it is an attractive target for the development of antimicrobials. MurB from Brucella ovis, the causative agent of brucellosis in sheep, is characterized here.

View Article and Find Full Text PDF

Genome-wide identification and expression analysis of the WRKY gene family in Mikania micrantha.

BMC Genomics

January 2025

College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan Province, 650224, China.

Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M.

View Article and Find Full Text PDF

Introduction: Motor Imagery (MI) Electroencephalography (EEG) signals are non-stationary and dynamic physiological signals which have low signal-to-noise ratio. Hence, it is difficult to achieve high classification accuracy. Although various machine learning methods have already proven useful to that effect, the use of many features and ineffective EEG channels often leads to a complex structure of classifier algorithms.

View Article and Find Full Text PDF

Prolactinomas are commonly treated with dopamine receptor agonists (DAs), such as bromocriptine (BRC) and cabergoline (CAB). However, 10-30% of patients exhibit resistance to DA therapies. DA resistance is largely associated with reduced dopamine D2 receptor (DRD2) expression, potentially regulated by epigenetic modifications, though the underlying mechanisms are still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!