Liver kinase B1 (LKB1) is a tumor-suppressing protein that is involved in the regulation of muscle metabolism and growth by phosphorylating and activating AMP-activated protein kinase (AMPK) family members. Here we report the development of a myopathic phenotype in skeletal and cardiac muscle-specific LKB1 knockout (mLKB1-KO) mice. The myopathic phenotype becomes overtly apparent at 30-50 wk of age and is characterized by decreased body weight and a proportional reduction in fast-twitch skeletal muscle weight. The ability to ambulate is compromised with an often complete loss of hindlimb function. Skeletal muscle atrophy is associated with a 50-75% reduction in mammalian target of rapamycin pathway phosphorylation, as well as lower peroxisome proliferator-activated receptor-alpha coactivator-1 content and cAMP response element binding protein phosphorylation (43 and 40% lower in mLKB1-KO mice, respectively). Maximum in situ specific force production is not affected, but fatigue is exaggerated, and relaxation kinetics are slowed in the myopathic mice. The increased fatigue is associated with a 30-78% decrease in mitochondrial protein content, a shift away from type IIA/D toward type IIB muscle fibers, and a tendency (P=0.07) for decreased capillarity in mLKB1-KO muscles. Hearts from myopathic mLKB1-KO mice exhibit grossly dilated atria, suggesting cardiac insufficiency and heart failure, which likely contributes to the phenotype. These findings indicate that LKB1 plays a critical role in the maintenance of both skeletal and cardiac function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886679 | PMC |
http://dx.doi.org/10.1152/japplphysiol.01293.2009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!