The fruit fly Drosophila melanogaster is an important model for basic research into the molecular mechanisms underlying cell function and development, as well as a major biomedical research tool. A significant advantage of Drosophila is the ability to apply live cell imaging to a variety of living tissues that can be dissected and imaged in vivo, ex vivo, or in vitro. For example, such imaging can be used for visual genetic screens such as analysis of morphological characteristics or of the distribution of fluorescently tagged proteins in living embryos. Indeed, Drosophila embryos have proven to be a useful model system for studying a variety of cellular processes such as asymmetric division, migration, wound healing, apoptosis, and fasciculation, as well as for tracking lipid droplet motility, protein recycling, fast mRNA transport, and the movement of chromosomal loci within individual cells. A crucial first step before imaging is preparation of the experimental material to ensure physiological relevance and to achieve the best conditions for image quality. Because it contributes to autofluorescence and lack of transparency, it is useful to remove the chorion before imaging by treating the embryos with bleach. This protocol describes the collection and mounting of Drosophila embryos for live cell imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1101/pdb.prot5403DOI Listing

Publication Analysis

Top Keywords

drosophila embryos
12
collection mounting
8
mounting drosophila
8
live cell
8
cell imaging
8
imaging
6
drosophila
5
embryos
5
embryos imaging
4
imaging fruit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!