Disrupted-in-schizophrenia 1 (DISC1) has been genetically associated with schizophrenia, and with brain phenotypes including grey matter volume and working memory performance. However, the molecular and cellular basis for these associations remains to be elucidated. One potential mechanism may be via an altered interaction of DISC1 with its binding partners. In this context, we previously demonstrated that one DISC1 variant, Leu607Phe, influenced the extent of centrosomal localization of pericentriolar material 1 (PCM1) in SH-SY5Y cells. The current study extends this work to human brain, and includes another DISC1 coding variant, Ser704Cys. Using immunohistochemistry, we first characterized the distribution of PCM1 in human superior temporal gyrus (STG). PCM1 immunoreactivity was localized to the centrosome in glia, but not in neurons, which showed widespread immunoreactivity. We quantified centrosomal PCM1 immunoreactivity in STG glia of 81 controls and 67 subjects with schizophrenia, genotyped for the two polymorphisms. Centrosomal PCM1 immunoreactive area was smaller in Cys704 carriers than in Ser704 homozygotes, with a similar trend in Phe607 homozygotes compared with Leu607 carriers, replicating the finding in SH-SY5Y cells. No differences were seen between controls and subjects with schizophrenia. These findings confirm in vivo that DISC1 coding variants modulate centrosomal PCM1 localization, highlight a role for DISC1 in glial function and provide a possible cellular mechanism contributing to the association of these DISC1 variants with psychiatric phenotypes. Whether this influence of DISC1 genotype extends to other centrosomal proteins and DISC1 binding partners remains to be determined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2876891PMC
http://dx.doi.org/10.1093/hmg/ddq130DOI Listing

Publication Analysis

Top Keywords

centrosomal pcm1
12
disc1
10
centrosomal localization
8
human brain
8
disc1 binding
8
binding partners
8
sh-sy5y cells
8
disc1 coding
8
pcm1 immunoreactivity
8
controls subjects
8

Similar Publications

Togaram1 is expressed in the neural tube and its absence causes neural tube closure defects.

HGG Adv

January 2025

Institute of Cell Biology and Neurobiology, Charite - Universitatsmedizin Berlin, Berlin, Germany; Department of Pediatric Neurology, Charité - Universitatsmedizin Berlin, Berlin, Germany; Center for Chronically Sick Children, Charité - Universitatsmedizin Berlin, Berlin, Germany; German Epilepsy Center for Children and Adolescents, Charité - Universitatsmedizin Berlin, Berlin, Germany. Electronic address:

Article Synopsis
  • The study investigates the connection between the TOGARAM gene family, specifically TOGARAM1, and spina bifida, a neural tube closure defect in embryonic development.
  • Researchers found that Togaram1 is important for proper neural tube formation and identified its role in cilia function and sonic hedgehog (Shh) signaling.
  • Findings from knockout mice and cell overexpression studies suggest that variations in TOGARAM1 could lead to defects that contribute to the development of spina bifida in patients.
View Article and Find Full Text PDF
Article Synopsis
  • In cell division and muscle growth, the nucleus and centrosomes need to work together properly.
  • Scientists found that a protein called SLMAP3 helps place nuclei correctly during muscle development, and without it, muscles don’t form properly in mice.
  • SLMAP3 is important for organizing the cell parts and making sure muscle cells grow and develop in the right way.
View Article and Find Full Text PDF

Excessive proinflammatory cytokine release induced by pyroptosis plays a vital role in intestinal mucosal inflammation in ulcerative colitis (UC). Several pyroptosis-related factors are regulated by the centrosome. Pericentriolar material 1 (PCM1) is a primary component of centriolar satellites that is present as cytoplasmic granules around the centrosome.

View Article and Find Full Text PDF

HN1 expression contributes to mitotic fidelity through Aurora A-PLK1-Eg5 axis.

Cytoskeleton (Hoboken)

September 2024

Cancer Biology Laboratory, Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey.

Hematological and neurological expressed 1 (HN1) is homolog of Jupiter protein from Drosophila melanogaster where it functions as a microtubule-associated protein. However, in mammalian cells, HN1 is associated partially with y-tubulin in centrosomes, Stathmin for stabilizing microtubules, and Cdh1 for regulating Cyclin B1 for cell cycle regulation. Moreover, HN1 overexpression leads to early mitotic exit as well.

View Article and Find Full Text PDF

Background: Primary cilia on the surface of eukaryotic cells serve as sensory antennas for the reception and transmission in various cell signaling pathways. They are dynamic organelles that rapidly form during differentiation and cell cycle exit. Defects in these organelles cause a group of wide-ranging disorders called ciliopathies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!