Gene expression after leaf rust infection was compared in near-isogenic wheat lines differing in the Lr10 leaf rust resistance gene. RNA from susceptible and resistant plants was used for cDNA library construction. In total, 55 008 ESTs were sequenced from the two libraries, then combined and assembled into 14 268 unigenes for further analysis. Of these ESTs, 89% encoded proteins similar to (E value of < or =10(-5)) characterized or annotated proteins from the NCBI non-redundant database representing diverse molecular functions, cellular localization and biological processes based on gene ontology classification. Further, the unigenes were classified into susceptible and resistant classes based on the EST members assembled from the respective libraries. Several genes from the resistant sample (14-3-3 protein, wali5 protein, actin-depolymerization factor and ADP-ribosylation factor) and the susceptible sample (brown plant hopper resistance protein, caffeic acid O-methyltransferase, pathogenesis-related protein and senescence-associated protein) were selected and their differential expression in the resistant and susceptible samples collected at different time points after leaf rust infection was confirmed by RT-PCR analysis. The molecular pathogenicity of leaf rust in wheat was studied and the EST data generated made a foundation for future studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920755PMC
http://dx.doi.org/10.1093/dnares/dsq009DOI Listing

Publication Analysis

Top Keywords

leaf rust
16
susceptible resistant
12
gene expression
8
rust infection
8
susceptible
5
resistant
5
protein
5
comparative gene
4
expression analysis
4
analysis susceptible
4

Similar Publications

The fungus Eriks () is the cause of leaf rust, one of the most damaging diseases, which significantly reduces common wheat yields. In -resistant adult plants, an APR-type resistance is observed, which protects the plant against multiple pathogen races and is distinguished by its persistence under production conditions. With a more complete understanding of the molecular mechanisms underlying the function of APR genes, it will be possible to develop new strategies for resistance breeding in wheat.

View Article and Find Full Text PDF

Wheat Leaf Rust Effector Pt48115 Localized in the Chloroplasts and Suppressed Wheat Immunity.

J Fungi (Basel)

January 2025

College of Plant Protection, Hebei Agricultural University, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071000, China.

Wheat leaf rust caused by () is a prevalent disease worldwide, seriously threatening wheat production. acquires nutrients from host cells via haustoria and secretes effector proteins to modify and regulate the expression of host disease resistance genes, thereby facilitating pathogen growth and reproduction. The study of effector proteins is of great significance for clarifying the pathogenic mechanisms of and effective control of leaf rust.

View Article and Find Full Text PDF

Mycodiversity in a micro-habitat: twelve species, including four new taxa, isolated from uredinia of coffee leaf rust, .

Fungal Syst Evol

December 2024

Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.

During surveys in the centres of origin of the coffee leaf rust (CLR), in Africa, as well as in its exotic range in Brazil, 23 isolates of the genus were obtained from uredinial pustules. Using a phylogenetic analysis of all isolates involving a combination of partial sequences of the internal transcribed spacer region of rDNA (ITS) and two gene regions: actin ( and translation elongation factor-1α (), 12 species were delimited; including four new species - , , and . GCPSR criteria were employed for species recognition, supported by morphological and cultural characters.

View Article and Find Full Text PDF

Advancements in bioinformatic tools and breakthroughs in high throughput RNA sequencing have unveiled the potential role of non-coding RNAs in influencing the overall expression of disease-responsive genes. Owing to the increasing need to develop resilient crop varieties against environmental constraints, our study explores the functional relationship of various non-coding RNAs in wheat during leaf rust pathogenesis. MicroRNAs (miRNAs) and circular RNAs (circRNAs) were retrieved from SAGE and RNA-Seq libraries, respectively, in the susceptible (HD2329) and resistant (HD2329 + Lr28) wheat Near-Isogenic Lines (NILs).

View Article and Find Full Text PDF

Global warming and extreme climate conditions caused by unsuitable temperature and humidity lead to coffee leaf rust () diseases in coffee plantations. Coffee leaf rust is a severe problem that reduces productivity. Currently, pesticide spraying is considered the most effective solution for mitigating coffee leaf rust.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!