This paper presents the latest results in the use of soluble materials, such as organic semiconductors (OSCs) and gate-dielectrics, for simplified processing of organic thin film transistors (OTFTs). In this work, the fabrication of a solution-processed OTFT, with 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) and TIPS-pentacene mixed with poly(4-vinylbiphenyl) (PVBP) as the OSC, and propyleneglycolmonomethyletheracetate (PGMEA) as the gate-dielectric, is described. From electrical measurements, we observed exemplary I-V characteristics for these TFTs. Device performance characteristics have been obtained, including the charge carrier mobility (micro) of 1.47 x 10(-2) cm2Ns, threshold voltage (V(T)) of -11.36 V, current on/off ratio (I(ON/OFF)) of 1.08 x 10(4), sub-threshold swing (SS) of 2.13 V/decade for an OTFT with PVBP blended TIPS-pentacene and micro of 1.39 x 10(-4) cm2/Vs, V(T) of 0.7 V, I(ON/OFF) of 1.64 x 10(3), SS of 4.21 V/decade for an OTFT without polymer binder, individually.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2010.2244 | DOI Listing |
J Phys Chem Lett
January 2025
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China.
Heat dissipation has become a critical challenge in modern electronics, driving the need for a revolution in thermal management strategies beyond traditional packaging materials, thermal interface materials, and heat sinks. Cubic boron arsenide (c-BAs) offers a promising solution, thanks to its combination of high thermal conductivity and high ambipolar mobility, making it highly suitable for applications in both electronic devices and thermal management. However, challenges remain, particularly in the large-scale synthesis of a high-quality material and the tuning of its physical properties.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Thin Film Energy Materials, Department of Materials and Environmental Technology, School of Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia.
NiO, a wide band gap hole-transporting material (HTM), is gaining attention in photovoltaics due to its optical transparency, chemical stability, and favourable band alignment with absorber. This study uses NiO nanoparticle-based HTM in semi-transparent SbS solar cells via a simple chemical precipitation method. We optimised NiO layer by varying precursor solution concentration and studied its impact on optical and structural properties, composition of nanoparticles and subsequent effect on the performance of semi-transparent SbS solar cell.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
E2Lim - Eau et Environnement Limoges UR 24133, University of Limoges, Limoges, France.
Excess of trace elements (TE) significantly alters the performances of anaerobic digestors (AD). Due to interactions with organic matter in particular, only a small fraction of TE can effectively interact with the biomass. However, assessing the bioavailable fraction of TE remains an issue.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
National Laboratory of Solid-State Microstructure, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China.
Zinc-ion batteries (ZIBs) have consistently faced challenges related to the instability of the zinc anode. Uncontrolled dendrite growth, hydrogen evolution reaction (HER), and byproduct accumulation on the zinc anode severely affect the cycling life of ZIBs. Herein, inorganic-organic hybrid thin films of titanicones (Ti-based hydroquinone, TiHQ) were fabricated by molecular layer deposition (MLD) technology to modify the zinc metal anode.
View Article and Find Full Text PDFChemistry
January 2025
Yamaguchi University, Department of Chemistry, 753-8512, Yamaguchi, JAPAN.
We report herein the synthesis of an unprecedented isomer of perylene, dicyclohepta[cd,fg]-as-indacene bearing two phenyl groups (1-Ph) by the nickel-mediated intramolecular homocoupling of a 4,4'-biazulene derivative (2). The X-ray crystallographic analysis and theoretical calculations revealed that 1-Ph adopts a unique helically twisted geometry although the local aromaticity of azulene moieties was preserved. The double covalent linkage of the two azulene skeletons imparts significant orbital interaction, which affords near-infrared (NIR) absorption (up to 1720 nm) and remarkable redox behaviors despite its closed-shell electronic structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!