We introduce the integration of a novel dielectrophoresis (DEP)-assisted filter with a compact disk (CD)-based centrifugal platform. Carbon-electrode dielectrophoresis (carbon-DEP) refers to the use of carbon electrodes to induce DEP. In this work, 3D carbon electrodes are fabricated using the C-MEMS technique and are used to implement a DEP-enabled active filter to trap particles of interest. Compared to traditional planar metal electrodes, 3D carbon electrodes allow for superior filtering efficiency. The system includes mounting modular 3D carbon-DEP chips on an electrically interfaced rotating disk. This allows simple centrifugal pumping to replace the large footprint syringe pump approaches commonly used in DEP systems. The advantages of the CD setup include not only a reduced footprint, but also complexity and cost reduction by eliminating expensive precision pumps and fluidic interconnects. To demonstrate the viability of this system we quantified the filter efficiency in the DEP trapping of yeast cells from a mix of latex and yeast cells. Results demonstrate selective filtering at flow rates up to 35 microl min(-1). The impact of electrode height, DEP chip misalignment and particle sedimentation on filter efficiency and the advantages this system represents are analyzed. The ultimate goal is to obtain an automated platform for bioparticle sorting with application in different fields such as point-of-care diagnostics and cell-based therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b925456k | DOI Listing |
Mikrochim Acta
January 2025
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
Procalcitonin (PCT) is a reliable biomarker for diagnosing and monitoring bacterial infections and sepsis. PCT exhibits good stability both in vivo and in vitro, and its levels drastically increase in response to bacterial infection or inflammatory reactions in the human body, making it a dependable indicator for sepsis diagnosis and monitoring with significant implications for clinical diagnosis and treatment guidance. Currently, immunosensors are widely utilized in PCT detection due to their high sensitivity and low detection limits.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.
Here, we design exotic interfaces within a flexible thermoelectric device, incorporating a polyimide substrate, Ti contact layer, Cu electrode, Ti barrier layer, and thermoelectric thin film. The device features 162 pairs of thin-film legs with high room-temperature performance, using p-BiSbTe and n-BiTeSe, with figure-of-merit values of 1.39 and 1.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, 45701, USA; Department of Biological Sciences, Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA. Electronic address:
Biofilms can cause biofouling, water quality deterioration, and transmission of infectious diseases. They are also responsible for microbiologically influenced corrosion (MIC) which can cause leaks, resulting in environmental disasters. A new disposable biofilm/MIC test kit was demonstrated to distinguish abiotic corrosion of carbon steel from MIC.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China.
Potassium-sulfur (K-S) batteries are severely limited by the sluggish reaction kinetics of the cyclooctasulfur (cyclo-S) electrode with low conductivity, which urgently requires a novel cathode to facilitate activity to improve sulfur utilization. In this study, using the wet chemistry method, the molecular clip of Li is created to replace cyclo-S molecular with the highly active chain-like S molecular. The molecular clip strategy effectively lowers the reaction barrier in potassium-sulfur systems, and the stretching of S─S bonds weakens the binding between sulfur atoms, facilitating the transformation of potassium polysulfides (KPSs).
View Article and Find Full Text PDFACS Sens
January 2025
Department of Chemistry, Burke Laboratories, Dartmouth College, 41 College St., Hanover, New Hampshire 03755, United States.
This paper describes the first use of conductive metal-organic frameworks as the active material in the electrochemical detection of nitric oxide in aqueous solution. Four hexahydroxytriphenylene (HHTP)-based MOFs linked with first-row transition metal nodes (M = Co, Ni, Cu, Zn) were compared as thin-film working electrodes for promoting oxidation of NO using voltammetric and amperometric techniques. Cu- and Ni-linked MOF analogs provided signal enhancement of 5- to 7-fold over a control glassy carbon electrode (SA = 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!