Deep-space glycine formation via Strecker-type reactions activated by ice water dust mantles. A computational approach.

Phys Chem Chem Phys

Dipartimento di Chimica IFM, NIS Centre of Excellence and INSTM (Materials and Technology National Consortium), UdR torino, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy.

Published: June 2011

A Strecker-type synthesis of glycine by reacting NH(3), H(2)C=O and HCN in presence of ice water (H(2)O-ice) as a catalyst has been theoretically studied at B3LYP/6-31+G(d,p) level within a cluster approach in order to mimic reactions occurring in the interstellar and circumstellar medium (ICM). Results indicate that, despite the exoergonic character of the considered reactions occurring at the H(2)O-ice surface, the kinetics are slow due to relatively high electronic energy barriers (ΔU(0)(≠)=15-45 kcal mol(-1)). Reactions occurring within H(2)O-ice cavities, in which ice bulk effects have been modeled by assuming a dielectric continuum (ε=78), show energy barriers low enough to allow NH(2)CH(2)OH formation but not NH=CH2 (ΔU(0)(≠)= 2 and 21 kcal mol(-1), respectively) thus hindering the NH(2)CH(2)CN formation, i.e. the precursor of glycine, through Strecker channels. Moreover, hydrolysis of NH(2)CH(2)CN to give glycine is characterized by high electronic energy barriers (ΔU(0)(≠)=27-34 kcal mol(-1)) and cannot readily occur at cryogenic temperatures. Nevertheless, the facts that NH=CH(2) formation can readily be achieved through the radical-radical HCN+2H - NH−−>CH2 reaction [D. E. Woon, Astrophys. J., 2002, 571, L177-L180], and that present results indicate that the Strecker step of NH=CH(2)+HCN−−>NH(2)CH(2)CN exhibits a relative low energy barrier (ΔU(0)(≠)=8–9 kcal mol(-1)), suggest that a combination of these two mechanisms allows for the formation of NH(2)CH(2)CN in the ICM. These results strengthen the thesis that NH(2)CH(2)CN could have been formed and protected by icy dust particles, and then delivered through micro-bombardments onto the early Earth, leading to glycine formation upon contact with the primordial ocean.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b923439jDOI Listing

Publication Analysis

Top Keywords

kcal mol-1
16
reactions occurring
12
energy barriers
12
glycine formation
8
ice water
8
occurring h2o-ice
8
high electronic
8
electronic energy
8
formation
6
deep-space glycine
4

Similar Publications

The relative reactivity and cis/trans selectivity of the intramolecular [3+2] cycloaddition (IM32CA) reactions of nitrile oxide (NO), azide (AZ), nitrile sulfide (NS) and nitrile ylide (NY), leading to functionalized heterocycles are studied within the Molecular Electron Density Theory. The kinetically controlled IM32CA reactions are predicted to be cis stereospecific, while the reaction feasibility follows the order NY > NS > NO > AZ with the respective activation Gibbs free energies of 13.7, 17.

View Article and Find Full Text PDF

Alkyl nickel intermediates relevant to catalytic processes often feature agostic stabilization, but relatively little is known about the situation in oligonickel systems. The dinickel(I) complex K[LNi], which is based on a compartmental pyrazolato-bridged ligand L with two β-diketiminato chelate arms, or its masked version, the dihydride complex [KL(Ni-H)] that readily releases H, oxidatively add methyl tosylate to give diamagnetic [LNi(CH)] () with (Ni···Ni) ≈ 3.7 Å.

View Article and Find Full Text PDF

Using high-level quantum chemical calculations, we predicted a strong O-H⋯C interaction between the apical carbon atoms of pyramidane and its derivatives and water molecules. Analysis of calculated electrostatic potential maps showed that there are areas of strong negative potential above apical carbon atoms in all studied structures. The results of quantum chemical calculations showed that the O-H⋯C interaction between the hydrogen atom of water and the apical carbon atom of pyramidane derivatives with four -CH substituents is unexpectedly strong, Δ = -7.

View Article and Find Full Text PDF

Nickel complexes are a potential candidate for antibacterial and antifungal activity. A new Ni (II) complex, bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato)nickel (II) (2), was synthesised by reacting, bis(3-methoxy-salicylaldehyde)nickel (II) (1) with isobutylamine. It was characterised by single crystal X-ray diffraction (ScXRD), UV-Vis, NMR, IR, mass spectrometry, and thermogravimetry (TG) to study its structure and physico-chemical properties.

View Article and Find Full Text PDF

Unveiling the enzymatic pathway of UMG-SP2 urethanase: insights into polyurethane degradation at the atomic level.

Chem Sci

December 2024

LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal

The recently discovered metagenomic urethanases UMG-SP1, UMG-SP2, and UMG-SP3 have emerged as promising tools to establish a bio-based recycling approach for polyurethane (PU) waste. These enzymes are capable of hydrolyzing urethane bonds in low molecular weight dicarbamates as well as in thermoplastic PU and the amide bond in polyamide employing a Ser-Ser -Lys triad for catalysis, similar to members of the amidase signature protein superfamily. Understanding the catalytic mechanism of these urethanases is crucial for enhancing their enzymatic activity and improving PU bio-recycling processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!