Ischemia and reperfusion (I/R) injury is a major cause of hepatic failure after liver surgery, but no method could monitor or predict it real-time during surgery. We measured bioelectrical impedance (BEI) and cell viability to assess the usefulness of BEI during I/R in rat liver. A 70% partial liver ischemia model was used. BEI was measured at various frequencies. Adenosine triphosphate (ATP) content, and palmitic acid oxidation rate were measured, and histological changes were observed in order to quantify liver cell viability. BEI changed significantly during ischemia at low frequency. In the ischemia group, BEI increased gradually during 60 min of ischemia and had a tendency to plateau thereafter. The ATP content decreased below 20% of the baseline level. In the I/R group, BEI recovered to near baseline level. After 24 hr of reperfusion, the ATP contents decreased to below 50% in 30, 60 and 120 min of ischemia and the palmitic acid metabolic rates decreased to 91%, 78%, and 74%, respectively, compared with normal liver. BEI may be a good tool for monitoring I/R during liver surgery. The liver is relatively tolerant to ischemia, however after reperfusion, liver cells may be damaged depending upon the duration of ischemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2844586PMC
http://dx.doi.org/10.3346/jkms.2010.25.4.577DOI Listing

Publication Analysis

Top Keywords

cell viability
12
ischemia reperfusion
12
ischemia
9
liver
9
bioelectrical impedance
8
rat liver
8
liver ischemia
8
liver surgery
8
atp content
8
palmitic acid
8

Similar Publications

Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.

View Article and Find Full Text PDF

Doxorubicin (DOXO) has long been used clinically and remains a key drug in cancer therapy. DOXO-induced cardiomyopathy (DICM) is a chronic and fatal complication that severely limits the use of DOXO. However, there are very few therapeutic agents for DICM, and there is an urgent need to identify those that can be used for a larger number of patients.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is one of the most common and highly lethal cancers worldwide. RIO kinase 1 (RIOK1), a protein kinase/ATPase that plays a key role in regulating translation and ribosome assembly, is associated with a variety of malignant tumors. However, the role of RIOK1 in HCC remains largely unknown.

View Article and Find Full Text PDF

Introduction: Immune checkpoint inhibitors (ICI) have improved the therapeutic arsenal in outpatient oncology care; however, data on necessity of hospitalizations associated with immune-related adverse events (irAEs) are scarce. Here, we characterized hospitalizations of patients undergoing ICI, from the prospective cohort study of the immune cooperative oncology group (ICOG) Hannover.

Methods: Between 12/2019 and 06/2022, 237 patients were included.

View Article and Find Full Text PDF

Circulating Tumor DNA as a Marker of Recurrence Risk in Stage III Colorectal Cancer: The α-CORRECT Study.

J Surg Oncol

January 2025

Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, and Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Background And Objectives: Identification of colorectal cancer (CRC) patients at high risk of recurrence could be of substantial clinical use. We evaluated the association of ctDNA status, using a tumor-informed assay, with recurrence-free survival (RFS).

Methods: Stage III CRC patients were enrolled between 2016 and 2020.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!