The transfection of cardiac myocytes is difficult, and so most of the data regarding the regulation of trafficking and targeting of cardiac ion channels have been obtained using heterologous expression systems. Here we apply the fast biolistic transfection procedure to adult cardiomyocytes to show that biolistically introduced exogenous voltage-gated potassium channel, Kv1.5, is functional and, like endogenous Kv1.5, localizes to the intercalated disc, where it is expressed at the surface of that structure. Transfection efficiency averages 28.2 +/- 5.7% of surviving myocytes at 24 h postbombardment. Ventricular myocytes transfected with a tagged Kv1.5 exhibit an increased sustained current component that is approximately 40% sensitive to 100 microM 4-aminopyridine and which is absent in myocytes transfected with a fluorescent protein-encoding construct alone. Kv1.5 deletion mutations known to reduce the surface expression of the channel in heterologous cells similarly reduce the surface expression in transfected ventricular myocytes, although targeting to the intercalated disc per se is generally unaffected by both NH(2)- and COOH-terminal deletion mutants. Expressed current levels in wild-type Kv1.5, Kv1.5DeltaSH3(1), Kv1.5DeltaN209, and Kv1.5DeltaN135 mutants were well correlated with apparent surface expression of the channel at the intercalated disc. Our results conclusively demonstrate functionality of channels present at the intercalated disc in native myocytes and identify determinants of trafficking and surface targeting in intact cells. Clearly, biolistic transfection of adult cardiac myocytes will be a valuable method to study the regulation of surface expression of channels in their native environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00005.2010 | DOI Listing |
J Cell Sci
October 2024
Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands.
Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded.
View Article and Find Full Text PDFEMBO Rep
November 2024
Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010, Créteil, France.
bioRxiv
September 2024
Department of Molecular Physiology and Biological Physics, University of Virginia, USA.
Caveolin is a monotopic integral membrane protein, widely expressed in metazoa and responsible for constructing enigmatic membrane invaginations known as caveolae. Recently, the high-resolution structure of a purified human caveolin assembly, the CAV1-8S complex, revealed a unique organization of 11 protomers arranged in a tightly packed, radially symmetric spiral disc. One face and the outer rim of this disc are highly hydrophobic, suggesting that the complex incorporates into membranes by displacing hundreds of lipids from one leaflet.
View Article and Find Full Text PDFARYA Atheroscler
January 2024
Cardiovascular research center, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: A structural heart disease or functional electrical abnormalities can cause an electrical storm.
Case Presentation: We present a young boy with an electrical storm who had no cardiac risk factors and a positive family history of sudden cardiac death. The stepwise diagnostic approach was ineffective in determining previously known causes as the origin of the electrical storm.
Front Immunol
August 2024
Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil.
Background: Cardiac arrhythmias are the main cause of sudden death due to Chronic Chagasic Cardiomyopathy (CCC). Here we investigated alterations in connexin 43 (Cx43) expression and phosphorylation in cardiomyocytes as well as associations with cardiac arrhythmias in CCC.
Methods: C57Bl/6 mice infected with underwent cardiac evaluations at 6 and 12 months after infection via treadmill testing and EKG.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!