It is not yet known whether dephosphorylation of proteins catalyzed by phosphatases occurs in the apoplastic space. In this study, we found that tobacco (Nicotiana tabacum) purple acid phosphatase could dephosphorylate the phosphoryl residues of three apoplastic proteins, two of which were identified as alpha-xylosidase and beta-glucosidase. The dephosphorylation and phosphorylation of recombinant alpha-xylosidase resulted in a decrease and an increase in its activity, respectively, when xyloglucan heptasaccharide was used as a substrate. Attempted overexpression of the tobacco purple acid phosphatase NtPAP12 in tobacco cells not only decreased the activity levels of the glycosidases but also increased levels of xyloglucan oligosaccharides and cello-oligosaccharides in the apoplast during the exponential phase. We suggest that purple acid phosphatase controls the activity of alpha-xylosidase and beta-glucosidase, which are responsible for the degradation of xyloglucan oligosaccharides and cello-oligosaccharides in the cell walls.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879787PMC
http://dx.doi.org/10.1104/pp.110.154138DOI Listing

Publication Analysis

Top Keywords

purple acid
16
acid phosphatase
16
tobacco cells
8
alpha-xylosidase beta-glucosidase
8
xyloglucan oligosaccharides
8
oligosaccharides cello-oligosaccharides
8
potential role
4
purple
4
role purple
4
acid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!