Introduction: Tetanus rarely occurs in developed countries, but it can result in fatal complications including respiratory failure due to generalized muscle spasms. Magnesium infusion has been used to treat spasticity in tetanus, and its effectiveness is supported by several case reports and a recent randomized controlled trial.

Case Presentations: Three Caucasian Greek men aged 30, 50 and 77 years old were diagnosed with tetanus and admitted to a general 12-bed intensive care unit in 2006 and 2007 for respiratory failure due to generalized spasticity. Intensive care unit treatment included antibiotics, hydration, enteral nutrition, early tracheostomy and mechanical ventilation. Intravenous magnesium therapy controlled spasticity without the need for additional muscle relaxants. Their medications were continued for up to 26 days, and adjusted as needed to control spasticity. Plasma magnesium levels, which were measured twice a day, remained in the 3 to 4.5 mmol/L range. We did not observe hemodynamic instability, arrhythmias or other complications related to magnesium therapy in these patients. All patients improved, came off mechanical ventilation, and were discharged from the intensive care unit in a stable condition.

Conclusion: In comparison with previous reports, our case series contributes the following meaningful additional information: intravenous magnesium therapy was used on patients already requiring mechanical ventilation and remained effective for up to 26 days (significantly longer than in previous reports) without significant toxicity in two patients. The overall outcome was good in all our patients. However, the optimal dose, optimal duration and maximum safe duration of intravenous magnesium therapy are unknown. Therefore, until more data on the safety and efficacy of magnesium therapy are available, its use should be limited to carefully selected tetanus cases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862042PMC
http://dx.doi.org/10.1186/1752-1947-4-100DOI Listing

Publication Analysis

Top Keywords

magnesium therapy
24
intravenous magnesium
16
intensive care
16
care unit
16
mechanical ventilation
12
magnesium
8
case series
8
respiratory failure
8
failure generalized
8
therapy patients
8

Similar Publications

Recurrent sports injuries present complex challenges that extend beyond the playing field, impacting athletes' physical well-being, mental resilience, and financial stability. This review outlines a comprehensive framework designed to prevent and manage these setbacks, empowering athletes to achieve sustained performance and recovery. This multidimensional issue requires an integrative approach encompassing physical rehabilitation, psychological resilience, and nutritional strategies.

View Article and Find Full Text PDF

This review explores the therapeutic potential of the stable gastric pentadecapeptide BPC 157 in addressing electrolyte imbalances, specifically hyperkalemia, hypokalemia, hypermagnesemia, and hyperlithemia. In hyperkalemia, BPC 157 demonstrated a comprehensive counteractive effect against KCl overdose (intraperitoneally, intragastrically, and in vitro), effectively mitigating symptoms such as muscular weakness, hypertension, sphincter dysfunction, arrhythmias, and lethality. It also counteracted the adverse effects of succinylcholine and magnesium overdose, including systemic muscle paralysis, arrhythmias, and hyperkalemia.

View Article and Find Full Text PDF

Nutraceuticals are not regulated by the US Food and Drug Administration, so a careful literature review is essential to make clinical decisions. Riboflavin or vitamin B2 can be recommended for migraine prevention in adults, but pediatric use is not proven. Adverse events are minimal.

View Article and Find Full Text PDF

Ectopic calcifications occur in tendons, ligaments, entheses, muscles, and fasciae, and are often associated with pain and inflammation. In clinical settings, these calcifications are commonly treated by physical therapy and/or surgical interventions. However, there is not enough understanding of pharmacological treatments as primary cures, supportive therapy to physical or surgical treatment, or even preventive measures to avoid or diminish the development of ectopic calcifications.

View Article and Find Full Text PDF

Magnesium ions regulate the Warburg effect to promote the differentiation of enteric neural crest cells into neurons.

Stem Cell Res Ther

January 2025

Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China.

Background: Understanding how enteric neural crest cells (ENCCs) differentiate into neurons is crucial for neurogenesis therapy and gastrointestinal disease research. This study explores how magnesium ions regulate the glycolytic pathway to enhance ENCCs differentiation into neurons.

Materials And Methods: We used polymerase chain reaction, western blot, immunofluorescence, and multielectrode array techniques to assess magnesium ions' impact on ENCCs differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!