Background: With the classical, active-site oriented drug-development approach reaching its limits, protein ligand-binding sites in general and allosteric sites in particular are increasingly attracting the interest of medicinal chemists in the search for new types of targets and strategies to drug development. Given that allostery represents one of the most common and powerful means to regulate protein function, the traditional drug discovery approach of targeting active sites can be extended by targeting allosteric or regulatory protein pockets that may allow the discovery of not only novel drug-like inhibitors, but activators as well. The wealth of available protein structural data can be exploited to further increase our understanding of allosterism, which in turn may have therapeutic applications. A first step in this direction is to identify and characterize putative effector sites that may be present in already available structural data.

Results: We performed a large-scale study of protein cavities as potential allosteric and functional sites, by integrating publicly available information on protein sequences, structures and active sites for more than a thousand protein families. By identifying common pockets across different structures of the same protein family we developed a method to measure the pocket's structural conservation. The method was first parameterized using known active sites. We characterized the predicted pockets in terms of sequence and structural conservation, backbone flexibility and electrostatic potential. Although these different measures do not tend to correlate, their combination is useful in selecting functional and regulatory sites, as a detailed analysis of a handful of protein families shows. We finally estimated the numbers of potential allosteric or regulatory pockets that may be present in the data set, finding that pockets with putative functional and effector characteristics are widespread across protein families.

Conclusions: Our results show that structurally conserved pockets are a common feature of protein families. The structural conservation of protein pockets, combined with other characteristics, can be exploited in drug discovery procedures, in particular for the selection of the most appropriate target protein and pocket for the design of drugs against entire protein families or subfamilies (e.g. for the development of broad-spectrum antimicrobials) or against a specific protein (e.g. in attempting to reduce side effects).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864279PMC
http://dx.doi.org/10.1186/1472-6807-10-9DOI Listing

Publication Analysis

Top Keywords

structural conservation
16
protein
16
protein families
16
protein pockets
12
drug discovery
12
active sites
12
sites
9
conservation protein
8
pockets
8
allosteric sites
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!