A two-step process for the sequential coating of magnetic carbonyliron (CI) particles with polystyrene (PS) and multiwalled carbon nanotubes (MWCNTs) was used to improve the sedimentation stability of micrometer-sized magnetic CI particles for magnetorheological (MR) applications under an applied magnetic field. The CI particles were initially coated with nanosized PS beads using an in situ dispersion polymerization method and then wrapped with a dense MWCNT nest through a solvent-casting method in a water/oil emulsion system. The morphology, MR performance, and sedimentation stability of the synthesized magnetic composite particles were examined. The composite particles showed enhanced MR characteristics and dispersion stability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am900577wDOI Listing

Publication Analysis

Top Keywords

sequential coating
8
coating magnetic
8
magnetic carbonyliron
8
carbonyliron particles
8
particles polystyrene
8
polystyrene multiwalled
8
multiwalled carbon
8
carbon nanotubes
8
sedimentation stability
8
composite particles
8

Similar Publications

Multiple respiratory viruses can concurrently or sequentially infect the respiratory tract, making their identification crucial for diagnosis, treatment, and disease management. We present a label-free diagnostic platform integrating surface-enhanced Raman scattering (SERS) with deep learning for rapid, quantitative detection of respiratory virus coinfections. Using sensitive silica-coated silver nanorod array substrates, over 1.

View Article and Find Full Text PDF

Sequential separation of anti-diabetic drugs in the presence of melamine as impurity using chromatographic methods.

BMC Chem

January 2025

Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University, Sharq El-Nile, Beni-Suef, 62511, Egypt.

The study of green analytical chemistry has garnered significant attention in the context of mitigating global environmental contamination. In this study, we present two methodologies for environmentally friendly chromatography that enable simultaneous and specific determination of Saxagliptin (SAX), metformin (MET), and a pharmacopoeial impurity of MET known as melamine (MEL). The initial method employed in this study is High-Performance Thin Layer Chromatography (HPTLC), which utilized 60 F 254 silica gel-coated Mark HPTLC plates on aluminum sheets as the stationary phase.

View Article and Find Full Text PDF

The effective knowledge of emissivity is pivotal to obtain reliable temperature measurements through non-contact techniques like pyrometry and thermal imaging. This is fundamental in high-temperature applications since material emissivity strongly depends on temperature conditions. Given the recent attention in high-temperature applications, especially for replacing fossil-fuel-dependent heating with greener solutions in energy-intensive processes, renewed interest in characterizing materials radiant properties rose.

View Article and Find Full Text PDF

Growth of Oxide and Nitride Layers on Titanium Foil and Their Electrochemical Properties.

Materials (Basel)

January 2025

Department of Chemistry, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.

The surface of titanium foil can be modified by heating in the air, in a N flow, and in an NH flow. Upon heating in the air, the elemental Ti gradually transforms to TiO at 550 °C and to rutile TiO at above 700 °C. Treatment in a N flow leads similarly to TiO at 600 °C and TiO at 700 °C, although the overall reaction is slower.

View Article and Find Full Text PDF

Microfluidic Integration of Magnetically Functionalized Microwires for Flow Cytometry Protein Quantification.

Materials (Basel)

January 2025

Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.

A novel approach to protein quantification utilizing a microfluidic platform activated by a magnetic assembly of functionalized magnetic beads around soft magnetic capture centers is presented. Functionalized magnetic beads, known for their high surface area and facile manipulation under external magnetic fields, are injected inside microfluidic channels and immobilized magnetically on the surface of glass-coated soft magnetic microwires placed along the symmetry axis of these channels. A fluorescent (Cy5) immunomagnetic sandwich ELISA is then performed by sequentially flowing the sample and all necessary reagents in the microfluidic channels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!