Cross-linking silica aerogels with organic groups has been shown to improve the strength over un-cross-linked aerogels by as much as 2 orders of magnitude. Previous cross-linking chemistry has been developed using solvents specifically chosen to dissolve the monomers and accommodate the reaction temperature. Because the process of making the aerogels requires so much solvent, it is of interest to consider less toxic solvents such as ethanol to increase safety and enhance scale up. To this end, two different epoxy precursors with suitable solubility in ethanol were evaluated as cross-linkers for silica gels prepared from (3-aminopropyl)triethoxysilane and tetraethylorthosilicate. In addition, 1,6-bis(trimethoxysilyl)hexane (BTMSH) was used as an additive in the underlying silica structure to add flexibility to the aerogels. It was found that the ethanol-derived aerogels exhibited more shrinkage than those prepared from other solvents but that including BTMSH in the aerogels significantly reduced this shrinkage. Inclusion of BTMSH also imparted the ability of the aerogel monoliths to recover elastically when compressed up to 50% strain. In addition, optimized cross-linked aerogels prepared in this study have mechanical properties comparable to those using other more undesirable solvents and cross-linkers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am900014zDOI Listing

Publication Analysis

Top Keywords

aerogels
8
silica aerogels
8
structure-property relationships
4
relationships porous
4
porous nanostructures
4
nanostructures epoxy-cross-linked
4
silica
4
epoxy-cross-linked silica
4
aerogels produced
4
produced ethanol
4

Similar Publications

Aerogels hold great potential in thermal insulation, catalytic supports, adsorption, and separation, due to their low density, high porosity, and low thermal conductivity. However, their inherent mechanical fragility and limited control functionality pose substantial challenges that hinder their practical use. In this study, a strategy is developed for the fabrication of cross-linked aramid nanofiber aerogels (cANFAs) by combining internanofiber surface cross-linking with ice-templating techniques.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation technology is regarded as a promising strategy for global freshwater shortage owing to its green and sustainable desalination process. Graphene aerogel (GA) is widely utilized in the design of solar-driven steam generation systems due to its excellent photothermal conversion efficiency and broad spectral absorption. Given the significant impact of hydrophilicity and thermal insulation on the performance of evaporators, nitrogen doping in the graphene structure not only effectively enhances its wettability but also allows for moderate tuning of its thermal conductivity, thereby optimizing the overall performance of the evaporator.

View Article and Find Full Text PDF

Facile and green fabrication of biodegradable aerogel from chitosan derivatives/modified gelatin as absorbent for oil removal.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China. Electronic address:

Frequent oil spills have caused increasingly severe pollution of marine water bodies. As a result, exploring green and efficient aerogels to tackles oil pollution is in high demand. In this work, a unique strategy for preparing all-biomass aerogel was innovatively proposed.

View Article and Find Full Text PDF

Defective boron nitride aerogels by salt template synthesis: A green adsorbent for tetracycline removal.

Environ Res

January 2025

Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China. Electronic address:

Hexagonal boron nitride (h-BN) exhibits unique application potential in water purification due to its large specific surface area, high porosity, and chemical inertness. Designing adsorbents with highly active adsorption sites is one effective method to improve their adsorption capacities. In this study, porous h-BN aerogels containing multiple defect types (DP-BN) were synthesized by using salt templates.

View Article and Find Full Text PDF

Adsorption and immobilization of phosphorus in eutrophic lake water and sediments by a novel red soil based porous aerogel.

Water Res

December 2024

Key Laboratory of Poyang Lake Environment and Resource Utilization, Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China. Electronic address:

To effectively mitigate global eutrophication in lakes, regulating sedimentary phosphorus release remains a primary strategy. Enhancing the adsorption and stabilization performance of passivating agents is integral to addressing endogenous phosphorus pollution in aquatic systems. This study presents a novel aerogel with a high specific surface area (663.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!