Microporous layers on titanium (Ti) are formed by chemical treatment in highly concentrated alkaline media, and their properties and growth mechanism are examined using electrochemical techniques, in situ resistometry, scanning electron microscopy (SEM), grazing-incident X-ray diffraction (GIXRD), and glow discharge optical emission spectroscopy (GD-OES). Chemical treatment in a 5 M aqueous KOH solution yields results superior to those from the same treatment in a 5 M aqueous NaOH solution, while a 3 M aqueous LiOH solution does not produce porous layers. The cation constituting the solution plays a vital role in the process. An SEM analysis reveals that the KOH solution is the most effective in forming microporosity and that the longer the treatment time, the more porous the near-surface layer. The results of GIXRD analysis show the presence of Na(2)Ti(5)O(11) and K(2)Ti(6)O(13) in the layers formed in the NaOH and KOH solutions, respectively; in the case of the LiOH solution, TiO(2) is formed. Chemical treatment in the NaOH and KOH solutions resembles a general corrosion process with the existence of local cathodic and anodic sites. The reduction reaction produces H(2), some of which becomes absorbed in the near-surface region of Ti, while the oxidation reaction produces the above-mentioned compounds and/or an oxide layer. The presence of hydrogen (H) within the solid is detected using GD-OES. The H-containing near-surface layer partially dissolves, yielding a microporous structure. The development and dissolution of the H-containing near-surface layer of Ti upon chemical treatment in the NaOH and KOH solutions are confirmed by resistometry measurements. They point to the formation of a compact passive layer on Ti upon exposure to the LiOH solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am900474h | DOI Listing |
ACS Nano
January 2025
NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisbon 1169-056, Portugal.
The "" under this Perspective underline the importance of interdisciplinary collaboration and partnerships across several disciplines, such as medical science and technology, medicine, bioengineering, and computational approaches, in bridging the gap between research, manufacturing, and clinical applications. Effective communication is key to bridging team gaps, enhancing trust, and resolving conflicts, thereby fostering teamwork and individual growth toward shared goals. Drawing from the success of the COVID-19 vaccine development, we advocate the application of similar collaborative models in other complex health areas such as nanomedicine and biomedical engineering.
View Article and Find Full Text PDFSci Adv
January 2025
Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.
Chimeric antigen receptor T cells (CART) targeting CD19 through CD28.ζ signaling induce rapid lysis of leukemic blasts, contrasting with persistent tumor control exhibited by 4-1BB.ζ-CART.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
The infiltration and excessive polarization of M1 macrophages contribute to the induction and persistence of low-grade inflammation in joint-related degenerative diseases such as osteoarthritis (OA). The lipid metabolism dysregulation promotes M1 macrophage polarization by coordinating the compensatory pathways of the inflammatory and oxidative stress responses. Here, a self-assembling, licofelone-loaded nanoparticle (termed LCF-CSBN), comprising chondroitin sulfate and bilirubin joined by an ethylenediamine linker, is developed to selectively reprogram lipid metabolism in macrophage activation.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Aier Eye Hospital, Tianjin University, Fukang Road, Tianjin, 300110, China.
Sjögren's syndrome-related dry eye (SSDE) is a severe dry eye subtype characterized by significant immune cell attacks on the lacrimal gland. However, delivering immunosuppressive drugs to the lacrimal glands for SSDE therapy safely and sustainably poses significant challenges in clinical practice. Herein, a ROS-responsive microneedle patch with detachable functionality (CE-MN) is developed to enable straightforward and minimally invasive administration to the lacrimal gland area by penetrating the periocular skin.
View Article and Find Full Text PDFCell Rep
January 2025
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China. Electronic address:
Glucagon has recently been found to modulate liver fat content, in addition to its role in regulating gluconeogenesis. However, the precise mechanisms by which glucagon signaling synchronizes glucose and lipid metabolism in the liver remain poorly understood. By employing chemical and genetic approaches, we demonstrate that inhibiting the androgen receptor (AR) impairs the ability of glucagon to stimulate gluconeogenesis and lipid catabolism in primary hepatocytes and female mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!