We report bistable non-volatile memory devices based on polystyrene derivatives containing pendent electron-donating mono-, di-, and tri(9,9-dihexylfluorene), which are denoted as poly(St-Fl), poly(St-Fl(2)), and poly(St-Fl(3)), respectively. The effects of the oligofluorene chain lengths and polymer surface structures on the memory characteristics were explored. Poly(St-Fl)-, poly(St-Fl(2))-, and poly(St-Fl(3))-based devices exhibited a flash memory characteristic with different turn-on threshold voltages of 2.8, 2.0, and 1.8 V, respectively, which was on the reverse trend with the highest occupied molecular orbital levels of -5.86, -5.80, and -5.77 eV. Moreover, the memory device showed a high ON/OFF current ratio of 2.5 x 10(4) and a long retention time of 10(4) s. The possible mechanism of the switching behavior was explained by the space-charge-limited-current theory and filamentary conduction. The larger aggregation domain size of the polymer thin film processed from the mixed solvent of chlorobenzene/N,N-dimethylformamide probably promoted the diffusion of the Al atoms into the polymer film and formed the conduction channel. Thus, it significantly reduced the turn-on threshold voltage on the studied polymer memory devices. The present study suggested that the polymer memory characteristics could be efficiently tuned through the pendent conjugated chain length and surface structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am900346j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!