Interfacial width in polymer bilayer films prepared by double-spin-coating and flotation methods.

ACS Appl Mater Interfaces

Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan, and Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan.

Published: September 2009

A spin-coating method with the aid of selective solvents has been used to construct multilayer structures for organic devices under the assumption that the solvents do not invade a preformed structure. To confirm the assumption, we examined the interfacial width (lambda(i)) of model polymer bilayers, composed of polystyrene and perdeuterated poly(methyl methacrylate), prepared by spin-coating and flotation methods. Neutron reflectivity measurements revealed that the lambda(i) value was larger for the spin-coating method than for the flotation method. These results cast doubt on the validity of the assumption. This knowledge should be kept in mind when this method is applied to construct multilayer structures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am9004336DOI Listing

Publication Analysis

Top Keywords

interfacial width
8
flotation methods
8
spin-coating method
8
construct multilayer
8
multilayer structures
8
width polymer
4
polymer bilayer
4
bilayer films
4
films prepared
4
prepared double-spin-coating
4

Similar Publications

The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.

View Article and Find Full Text PDF

Filler defects and matrix crosslinking degree are the main factors affecting the interfacial adhesion properties of propellants. Improving adhesion can significantly enhance debonding resistance. In this study, all-atom molecular dynamics (MD) simulations are employed to investigate the interfacial adsorption behavior and mechanisms between ammonium perchlorate (AP) fillers and a poly(3,3-bis-azidomethyl oxetane)-tetrahydrofuran (PBT) matrix.

View Article and Find Full Text PDF

Modification of Processability and Shear-Induced Crystallization of Poly(lactic acid).

Polymers (Basel)

December 2024

Japan Advanced Institute of Science and Technology, Graduated School of Advanced Science and Technology, Asahidai, Nomi 923-1292, Ishikawa, Japan.

We studied the rheological properties under both shear and elongational flow and crystallization behaviors after shear history for binary blends of poly(lactic acid) (PLA) and ethylene-vinyl acetate copolymer (EVA) with a slightly lower shear viscosity. EVA was immiscible with PLA and dispersed in droplets in the blend. The addition of EVA significantly reduced the shear viscosity, which is attributed to the interfacial slippage between PLA and EVA.

View Article and Find Full Text PDF

Nano metakaolin (NMK) has attracted considerable interest for its potential to improve the durability of cementitious materials. However, the effect of NMK on the splitting tensile performance of concrete has not been systematically investigated. This study investigates the splitting tensile performance of NMK concrete and analyzes its failure behavior under splitting load.

View Article and Find Full Text PDF

Tensile Behavior Assessment of Grid-Type CFRP Textile-Reinforced Mortar with Different Design Variables.

Materials (Basel)

December 2024

Construction Technology Research Center, Construction Division, Korea Conformity Laboratories, 199, Gasan Digital 1-ro, Geumcheon-gu, Seoul 08503, Republic of Korea.

This study investigates the tensile behavior of carbon-fiber-reinforced polymer (CFRP) and textile-reinforced mortar (TRM) under various design variables to enhance understanding and application in construction structures. TRM reinforced with CFRP grids is highly effective for strengthening existing structures due to its lightweight nature, durability, ease of installation, and corrosion resistance. The research aims to evaluate how design parameters such as the CFRP grid type, mortar matrix strength (influenced by the water-to-cement ratio), specimen length, and grid width affect TRM's mechanical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!