Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods.

ACS Appl Mater Interfaces

Novel Materials and Nanotechnology Laboratory, IATA, CSIC, Apartado Correos 73, 46100 Burjassot, Spain.

Published: January 2009

Collagen, as the major structural protein of the extracellular matrix in animals, is a versatile biomaterial of great interest in various engineering applications. Electrospun nanofibers of collagen are regarded as very promising materials for tissue engineering applications because they can reproduce the morphology of the natural bone but have as a drawback a poor structural consistency in wet conditions. In this paper, a comparative study between the performance of different cross-linking methods such as a milder enzymatic treatment procedure using transglutaminase, the use of N-[3-(dimethylamino)propyl]-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide, and genipin, and the use of a physical method based on exposure to ultraviolet light was carried out. The chemical and enzymatic treatments provided, in this order, excellent consistency, morphology, cross-linking degree, and osteoblast viability for the collagen nanofibers. Interestingly, the enzymatically cross-linked collagen mats, which are considered to be a more biological treatment, promoted adequate cell adhesion, making the biomaterial biocompatible and with an adequate degree of porosity for cell seeding and in-growth.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am800063xDOI Listing

Publication Analysis

Top Keywords

collagen nanofibers
8
engineering applications
8
collagen
5
comparative performance
4
performance electrospun
4
electrospun collagen
4
nanofibers cross-linked
4
cross-linked methods
4
methods collagen
4
collagen major
4

Similar Publications

Postoperative adhesion around nerves sometimes results in sensory and motor dysfunctions. To prevent these disorders, we have developed an electrospun nanofiber sheet incorporating methylcobalamin (MeCbl), an active form of vitamin B12 with anti-inflammatory and neuroregenerative effects. This study aimed to investigate the neuroprotective effects of MeCbl sheets against postoperative adhesion and to compare the effects of MeCbl sheets with those of porcine small intestinal submucosa (SIS) sheets using a rat sciatic nerve adhesion model.

View Article and Find Full Text PDF

In this study, an advanced nanofiber breast cancer model was developed and systematically characterized including physico-chemical, cell-biological and biophysical parameters. Using electrospinning, the architecture of tumor-associated collagen signatures (TACS5 and TACS6) was mimicked. By employing a rotating cylinder or static plate collector set-up, aligned fibers (TACS5-like structures) and randomly orientated fibers (TACS6-like structures) fibers were produced, respectively.

View Article and Find Full Text PDF

The self-assembled peptide RADA16-I (RADARADARADARADA) has been widely used in biomaterials. However, studies on the practical application of self-assembled peptide hydrogels loaded with bioactive peptides are still insufficient. In this study, we successfully prepared the peptide nanofiber gel RGJ by incorporating the bioactive peptides A8SGLP-1 (G) and Jagged-1 (J) into RADA16-I (R) in specific ratios.

View Article and Find Full Text PDF

A Recombinant Human Collagen and RADA-16 Fusion Protein Promotes Hemostasis and Rapid Wound Healing.

ACS Appl Bio Mater

December 2024

Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.

In this study, we designed a fusion protein, rhCR, by combining human collagen with the self-assembling peptide RADA-16 using genetic engineering technology. The rhCR protein was successfully expressed in . The rhCR can self-assemble into a three-dimensional nanofiber network under physiological conditions.

View Article and Find Full Text PDF

Immunomodulation is essential for implants to regulate tissue regeneration, while bioelectricity plays a fundamental role in regulating immune activities. Under natural preferences, the bone matrix electrical microenvironment is heterogeneous in the nanoscale, which provides fundamental electrical cues to regulate bone immunity and regenerative repair. However, remodeling bone nanoscale heterogeneous electrical microenvironment remains a challenge, and the underlying immune modulation mechanism remains to be explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!