Optical properties of LaF3:Er,Yb nanoparticle-doped organic-inorganic hybrid material.

J Nanosci Nanotechnol

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.

Published: March 2010

Oleic acid (OA)-modified LaF3:Er,Yb nanoparticle-doped organic-inorganic hybrid material (OIHM) was prepared. The absorption spectrum and photoluminescence spectrum were analyzed. The full width at half maximum (FWHM) of the photoluminescence spectrum was about 83 nm. The Judd-Ofelt theory was used to analyze the absorption spectrum of Er3+ and obtain the intensity parameters: omega2 = 2.11 x 10(-20) cm2, omega4 = 0.78 x 10(-200 cm2, omega6 = 0.56 x 10(-20)cm2. The line strengths predict spontaneous transition probabilities, and the radiative lifetimes are calculated with the Judd-Ofelt intensity parameters. The calculated radiative lifetime of the excited 4I13/2 state of Er3+ is 13.34 ms. Based on the parameters we calculated, OA-modified LaF3:Er,Yb nanoparticle-doped OIHM is a potential material for polymeric optical waveguide amplifiers.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2010.2115DOI Listing

Publication Analysis

Top Keywords

laf3eryb nanoparticle-doped
12
nanoparticle-doped organic-inorganic
8
organic-inorganic hybrid
8
hybrid material
8
oa-modified laf3eryb
8
absorption spectrum
8
photoluminescence spectrum
8
intensity parameters
8
parameters calculated
8
optical properties
4

Similar Publications

Multilevel Cu-LIG Tactile Sensing Arrays for 3D Touch Human-Machine Interaction.

ACS Appl Mater Interfaces

December 2024

School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China.

High-performance flexible tactile sensors have attracted significant attention in the domains of human-machine interactions. However, the efficient fabrication of sensors with highly sensitive responses over a broad load range still remains a challenge. Here, we propose a one-step laser writing route to construct a distinctive multilevel piezoresistive structure, consisting of Cu nanoparticle-doped graphene protrusions and surrounding porous Cu sheets.

View Article and Find Full Text PDF
Article Synopsis
  • * This study developed and characterized iron nanoparticles doped with selenium (FeNP@SeNPs) to explore their effects on the calcium signaling system in astrocytes under ischemia-like conditions.
  • * The research found that combining magnetic selenium nanoparticles with electromagnetic stimulation enhances cell penetration and facilitates endocytosis through TRPV4 channel activation, allowing for a reduced effective concentration compared to traditional selenium nanoparticles.
View Article and Find Full Text PDF

Cellular senescence is considered an important tumour suppression mechanism in response to damage and oncogenic stress in early lesions. However, when senescent cells are not immune-cleared and persist in the tumour microenvironment, they can drive a variety of tumour-promoting activities, including cancer initiation, progression, and metastasis. Additionally, there is compelling evidence demonstrating a direct connection between chemo(radio)therapy-induced senescence and the development of drug resistance and cancer recurrence.

View Article and Find Full Text PDF

Modern commercial erbium-doped fibers are limited in their doping concentrations due to the tendency of Er ions to cluster in silicate glasses. Clustering inevitably leads to ion quenching, one major obstacle preventing erbium-doped fibers (EDFs) from scaling to higher laser power near 15XX nm. Here, we present a new, to our knowledge, method for doping erbium into fibers through the use of Er:BaF nanoparticle (NP) precursors.

View Article and Find Full Text PDF

The rising atmospheric CO levels necessitate the development of effective materials for its mitigation. Utilization of adsorbent materials for the reversible physisorption of CO has a significantly less impact. Recognizing this need, herein, we present a nitrogen-rich, aqua-stable, Ag(0)-nanoparticle-doped metal-organic framework (MOF) designed for the irreversible chemical conversion of CO into valuable fine chemicals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!