The nanoscale luminescent complex of europium (III)-pyromellitic acid was synthesized successfully in the polyvinylpyrrolidone (PVP) matrix by a co-precipitation method. The chemical formula of the synthesized complex was speculated to be PVP/Eu4/3L x 3H2O by elemental analysis, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and Fourier-transform infrared spectroscopy (FT-IR). The X-ray diffraction (XRD) pattern of PVP/Eu4/3L x 3H2O indicated that it was a new crystalline complex since the diffraction angle, diffraction intensity, and distance of the crystal plane were all different from those of the ligand. It is proved by the thermogravimetric curve that the synthesized nanoscale luminescent complex was stable, ranging from ambient temperature to 479 degrees C in air. The transmission electron microscopy (TEM) image showed that the complex was nanoparticles. The synthesized complex emitted the characteristic red fluorescence of Eu(III) ions under ultraviolet excitation by the photoluminescence analyses. For example, the emission peaks of PVP/Eu4/3L x 3H2O at 578, 591, 612, and 694 nm using 322 nm as exciting wavelength are assigned to the 5D0 --> 7F0, 5D0 --> 7F1, 5D0 --> F2, and 5D0 --> 7F4 electron transitions of the Eu3+ ions, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2010.2056 | DOI Listing |
Luminescence
January 2025
Department of Display Science and Engineering, Pukyong National University, Busan, Republic of Korea.
The influence of Eu concentration on the crystal structure and photoluminescence (PL) properties of Ca(PO):xEu (0.06 ≤ x ≤ 0.10) phosphors is systematically investigated using X-ray diffraction (XRD) Rietveld refinement, scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, UV-visible spectroscopy, and PL spectroscopy.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Physics, R. T. M. Nagpur University, 440033, Nagpur, India.
The preparation of new phosphor with outstanding luminescent properties for white light-emitting diodes (WLEDs) is consistently a challenging. Here in the present study, A novel white-emitting chloropatite phosphor Ca(PO)Cl:Eu was synthesized via the pechini sol gel synthesis with citric acid and polyethylene glycol (PEG) acid as a fuel at 850 °C systematically investigating the impact of doping concentration and synthesis temperature on both photoluminescence properties and crystal phase. The structural characteristics and crystalline nature of the prepared sample were investigated by using X-ray diffraction (XRD) patterns and Fourier transform infrared (FT-IR) spectra.
View Article and Find Full Text PDFMolecules
December 2024
Department of Science and Humanities, School of Engineering and Technology, CHRIST University, Bangalore 560029, Karnataka, India.
Using the solid-state reaction technique, varied YSiO phosphors activated by europium (Eu) ions at varied concentrations were made at calcination temperatures of 1000 °C and 1250 °C during sintering in an air environment. The XRD technique identified the monoclinic structure, and the FTIR technique was used to analyze the generated phosphors. Photoluminescence emission and excitation patterns were measured using varying concentrations of Eu ions.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China.
Far-red phosphors have emerged as a desirable research hotspot owing to their critical role in promoting plant growth. Especially, Eu ions typically present the D→F (J = 0, 1, 2, 3, 4) transitions, which overlap with the far-red light required for plant photosynthesis. However, achieving high-efficiency far-red emission of Eu remains challenging due to weak D→F transition and concentration quenching.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
School of Health Sciences, Center for Health Technology and Services Research, University of Aveiro, Aveiro, Portugal.
Background: Digital solutions, such as mobile apps or telemonitoring devices, are frequently considered facilitators in the process of empowering older adults, but they can also act as a source of digital exclusion or disempowerment if they are not adequate for older adults' needs and characteristics.
Objective: This study aimed to synthesize and critically evaluate existing evidence on the effectiveness of integrated digital solutions that enable interaction for empowering older adults in aspects related to their health and to explore potential factors (eg, type of technology, participants' characteristics) impacting effectiveness.
Methods: A systematic search was carried out in PubMed, ScienceDirect, SCOPUS, EBSCO, and SciELO using a combination of terms informed by previous reviews on empowerment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!