Effect of titanium oxide nanoparticle incorporation into nm thick coatings deposited using an atmospheric pressure plasma.

J Nanosci Nanotechnol

School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, Dublin 4, Ireland.

Published: April 2010

This study reports on the use of an atmospheric plasma technique to incorporate metal oxide nanoparticles into nm thick siloxane coatings. Titanium dioxide (TiO2) particles with diameters of 30-80 nm, were mixed with a number of different siloxanes-polydimethylsiloxane, hexamethyldisiloxane and tetraethylorthosilicate (TEOS). The TiO2/TEOS mixture was found to give the most stable suspension, possibly due to the higher surface tension of TEOS compared with the other siloxanes. TiO2/TEOS mixtures with 2 to 10% by weight of the metal oxide were prepared and were then nebulised into a helium/oxygen atmospheric plasma. Polyethylene terepthalate (PET) and silicon wafer substrates were passed through this plasma using a reel-to-reel substrate manipulation system. SEM combined with EDX was used to examine the distribution of the metal oxide particles in the resultant coatings. The TEOS coating thickness without TiO2 addition was 9 nm. The composite coating consisted of a relatively homogeneous distribution of small agglomerates of the TiO2 nanoparticles in TEOS. A linear increase in the titanium surface concentration was observed with increase in the quantity of TiO2 added into the siloxane precursor. The chemical functionality of the siloxane coating was examined using FTIR spectroscopy and no significant spectrum differences was observed with the incorporation of the different concentrations of TiO2 into the polymer. There were also no changes observed in coating surface energy with TiO2 incorporation. Coating morphology was examined using optical profilometry and surface roughness (Ra) values increased from typical values of 0.8 nm for the TEOS coating to 4.1 nm for the TiO2/TEOS coating. The adhesion of the deposited coatings was compared using fragmentation tests. These were carried out through uniaxial tensile loading. The coating cracking pattern after applied strain of 20% was not observed to change significantly with the addition of TiO2 into the siloxane.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2010.1432DOI Listing

Publication Analysis

Top Keywords

metal oxide
12
atmospheric plasma
8
coating
8
teos coating
8
tio2 siloxane
8
tio2
7
teos
5
titanium oxide
4
oxide nanoparticle
4
nanoparticle incorporation
4

Similar Publications

The low reduction potentials required for the reduction of dinitrogen (N) render metal-based nitrogen-fixation catalysts vulnerable to irreversible damage by dioxygen (O). Such O sensitivity represents a major conundrum for the enzyme nitrogenase, as a large fraction of nitrogen-fixing organisms are either obligate aerobes or closely associated with O-respiring organisms to support the high energy demand of catalytic N reduction. To counter O damage to nitrogenase, diazotrophs use O scavengers, exploit compartmentalization or maintain high respiration rates to minimize intracellular O concentrations.

View Article and Find Full Text PDF

Maize (Zea mays L.) faces significant challenges to its growth and productivity from heavy metal stress, particularly Chromium (Cr) stress, which induces reactive oxygen species (ROS) generation and damages photosynthetic tissues. This study aimed to investigate the effects of fulvic acid (FA) application, via foliar spray or root irrigation, on mitigating chromium stress in maize by evaluating its impact on antioxidant activity and growth parameters.

View Article and Find Full Text PDF

A simple, fast, and cost-effective colorimetric nitrite (NO) sensor based on ZIF-67-derived CoO nanocomposite (ZCo-2 NC) structure has been developed. The prepared colorimetric sensor (ZCo-2 NC) was employed to sensitively detect NO in drinking water system by the exhibition of promising peroxidase-mimicking nanozyme-like features. The sensor manifest well-determined sensing response with excellent linear and wide range of NO sensitivity (0.

View Article and Find Full Text PDF

Heavy Metals Alter the Anti-cancer Potency of Medicinal Plants.

Anticancer Agents Med Chem

January 2025

Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India.

This review investigates the outcome of heavy metal contamination on the anti-cancer properties of medicinal plants. Heavy metal pollution is a significant environmental concern globally, often found in soil and water due to industrial activities. Therapeutic plants are recognized because of their therapeutic attributes and their ability to absorbing these contaminants.

View Article and Find Full Text PDF

Ocean alkalinity enhancement (OAE) based on enhanced weathering of olivine (EWO) is a promising marine carbon dioxide removal (mCDR) technique. Previous research primarily focuses on the toxicological effects of potentially toxic metals (PTMs) released from olivine. In this Perspective, we explore the overlooked impacts of EWO on environmental media in two scenarios: olivine applied to beaches/shallow continental shelves and offshore dispersion by vessels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!