We have carried out configurational-bias Grand Canonical Monte Carlo simulations of propane and propylene adsorption onto homogeneous bundles of single-walled carbon nanotubes, at ambient temperature (T = 298.15 K) and over a pressure range of 0.1 bar < or = p < 10.4 bar. The distinct contributions from external sites (grooves and external surface) and endohedral volume (inter- and intra-tubular) are individually addressed for bundles with nanotube diameters (D) within the range 11.0 A < D < or = 18.1 A. The different contributions from the various adsorption sites are interpreted from a molecular perspective, which takes into account both the skeletal geometry of the bundle and individual tube diameter. The resulting microscopic picture is then related to a macroscopic measurable isotherm by modeling the nanotube bundles, as a function of a characteristic hydraulic diameter (Dh) over the range 100 A < or = Dh < or = 310 A. A previously unobserved anisotropic behavior of the adsorption isotherm for the peripheral surface of the bundles as a function of hydraulic diameter is reported.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2010.1395DOI Listing

Publication Analysis

Top Keywords

propane propylene
8
propylene adsorption
8
single-walled carbon
8
nanotube bundles
8
bundles function
8
hydraulic diameter
8
bundles
5
molecular simulation
4
simulation study
4
study propane
4

Similar Publications

Hydrogen spillover, particularly when involving "interparticle" hydrogen spillover, offers a unique opportunity to enhance catalytic efficiency by remote activation of surface acidity. Building on this concept, this study aims to investigate physically mixed alumina-supported platinum nanoparticles (Pt/AlO) and zirconia-supported tungsten oxide (WO/ZrO) in promoting the direct synthesis of cumene from benzene and propane at 300 °C. The reaction with Pt/AlO alone afforded propylene as the only product, indicating the successive reaction route of Pt-catalyzed dehydrogenation of propane, followed by acid-catalyzed alkylation.

View Article and Find Full Text PDF

Efficient Photocatalytic Propane Direct Dehydrogenation to Propylene Over PtO Clusters.

Adv Mater

January 2025

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

The direct dehydrogenation of alkanes to olefins under mild conditions is challenging due to the inert nature of alkyl C─H bonds. Herein, an efficient photocatalytic system is developed for propane direct dehydrogenation (PDH) to propylene, consisting of ≈1.30 nm sized PtO clusters immobilized on a layered double hydroxide -derived ZnO/AlO support (LD-Pt).

View Article and Find Full Text PDF

Enhancing Stability and Activity of Fe-Based Catalysts for Propane Dehydrogenation via Anchoring Isolated Fe-Cl Sites.

ChemSusChem

January 2025

Key Laboratory of Luminescence and Optical Information Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China.

The eco-friendly features and desirable catalytic activities of Fe-based catalysts make them highly promising for propane dehydrogenation (PDH). However, simultaneously improving their stability and activity remains a challenge. Here, we present a strategy to address these issues synergistically by anchoring single-atom Fe-Cl sites in Al vacancies of AlO.

View Article and Find Full Text PDF

Direct Conversion of CO to Olefins over a CrO/ZSM-5@CaO Cooperative and Bifunctional Material Under Isothermal Conditions.

ACS Sustain Chem Eng

December 2024

United States Department of Energy, National Energy Technology Laboratory, Pittsburgh, Pennsylvania 15236, United States.

Direct conversion of point-source CO into fine chemicals over cooperative and bifunctional materials (BFMs) - composed of adsorbents and catalysts - has emerged as a promising approach to improve the energy efficiency of the carbon capture and conversion processes. In this study, a bifunctional material consisting of CrO/ZSM-5 catalyst and CaO adsorbent was developed and tested in the CO-oxidative dehydrogenation of propane (CO-ODHP) for reactive capture of CO in a fixed bed reactor. First, CaO was prepared using two distinct methods: solid-state and citrate sol-gel.

View Article and Find Full Text PDF

Pt-ZnO Interfacial Effect on the Performance of Propane Dehydrogenation and Mechanism Study.

ACS Nano

December 2024

School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China.

Bimetallic Pt-based catalysts, for example, PtZn and PtSn catalysts, have gained significant attention for addressing the poor stability and low selectivity of pristine Pt catalysts over propane dehydrogenation (PDH). However, the structures of the active sites and the corresponding catalytic mechanism of PDH are still elusive. Here, we demonstrate a spatially confined Pt-ZnO@RUB-15 catalyst (where "" is the mole ratio of Zn/Pt and RUB-15 is a layered silica), which exhibited high catalytic activity, ultrahigh selectivity (>99%), and resistance to coking at 550 °C for PDH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!