Ion beam irradiation of materials can cause defect creation as well as defect annealing depending on the ion beam parameters such as ion fluence and the energy loss of ions in materials. In present review, we report the behaviour of carbon nanotubes under exteme conditions such as laser irradiation and ion irradiation. The reorientation of the crystalline planes in confined single crystal nickel nanorods inside carbon nano tube, induced by heavy ion irradiation, is reported. Axial buckling of nickel nanorods as well as walls of carbon nano tubes in nickel encapsulated carbon nano tubes under swift heavy ion irradiation at high fluence is observed. At high fluence, amorphization of nickel nanorods inside carbon nanotubes is also observed. Axial buckling and amorphization under ion irradiation at high fluence are dependent on the number of walls in carbon nanotubes. High resolution transmission electron microscopy was used to investigate the reorientations, buckling and amorphization of metal filled nanotubes. Synthesis of carbon nanowires by ion irradiation of fullerene and their field emission properties with comparison to that of unirradiated and irradiated carbon nanotubes are reported. An international scenario with future prospects of ion beam studies in carbon nanotube is briefed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2010.1979 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!