Does the pelleting process affect the nutritive value of a pre-starter diet for suckling piglets? Ex vivo studies on mineral absorption.

J Sci Food Agric

Unidad de Nutrición Animal, Estación Experimental del Zaidín, (CSIC), Camino del Jueves, 18100 Granada, Spain.

Published: April 2010

Background: The effects of pelleting on the extent of the Maillard reaction (MR) and on calcium, magnesium and zinc solubility and absorption were analysed in a conventional pre-starter diet for suckling piglets. Development was tested measuring colour, absorbance (280/420 nm), fluorescence, residual free lysine, furosine, hydroxymethylfurfural (HMF) and furfural contents before and after pelleting. Fluorescence, absorbance and mineral solubility were also measured after in vitro digestion of diets. The effects on mineral absorption were tested using Caco-2 cells.

Results: MR indexes confirmed the development of the reaction during the pelleting of this particular diet compared with the meal diet. The CIE-Lab colour parameters showed a decrease in luminosity (L*) and progress of the colour to the red zone (a*) in the pelleted diet. A 36% decrease in free lysine content was observed. Significant correlations were observed between fluorescence intensity and furosine levels, HMF and furfural. The pelleting process did not modify calcium and magnesium solubility after in vitro digestion, but soluble zinc increased. The efficiency of calcium and zinc transport across Caco-2 cell monolayers was greater in the pelleted diet.

Conclusions: Evidence of MR development is shown, resulting in various nutritional consequences. Optimisation of pelleting could result in a better formulation of diets for feedstuffs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.3901DOI Listing

Publication Analysis

Top Keywords

pelleting process
8
pre-starter diet
8
diet suckling
8
mineral absorption
8
calcium magnesium
8
free lysine
8
hmf furfural
8
vitro digestion
8
pelleting
6
diet
5

Similar Publications

The Biological Properties of Co-Doped Monetite Are Influenced by Thermal Treatment.

J Biomed Mater Res B Appl Biomater

February 2025

Bioassays and Cellular Dynamics Lab, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, São Paulo, Brazil.

Calcium phosphates, notably monetite, are valued biomaterials for bone applications owing to their osteogenic properties and rapid uptake by bone cells. This study investigates the enhancement of these properties through Cobalt doping, which is known to induce hypoxia and promote bone cell differentiation. Heat treatments at 700°C, 900°C, and 1050°C are applied to both monetite and Cobalt-doped monetite, facilitating the development of purer, more crystalline phases with varied particle sizes and optimized cellular responses.

View Article and Find Full Text PDF

Microbial fermentation of agro-industrial residues is gaining significant traction as a sustainable and economically viable approach in bioprocessing. This study explored lactic acid production from selected agro-industrial residues: pre-treated sugarcane waste, potato peel waste, or milk processing waste with alfalfa pellets using strains of organic origin. Five homo-fermentative strains (VITJ1, VITJ2, VITJ3, VITJ4, and VITJ5) were assessed for compatibility and formed into 15 consortia.

View Article and Find Full Text PDF

Significance: Women are at increased risk for mood disorders, which may be partly attributed to exposure to endocrine-disrupting chemicals (EDCs) during sensitive periods such as pregnancy. Exposure during these times can impact brain development in the offspring, potentially leading to mood disorders in later life. Additionally, fluctuating levels of endogenous estrogens, as seen during pregnancy, or the use of oral contraceptives, can further elevate this risk.

View Article and Find Full Text PDF

Purpose: To evaluate diagnostic performance of four diagnostic methods for rapid determination of methicillin resistance in S. aureus positive blood cultures (BCs).

Methods: Clinical and spiked BCs were subjected to the evaluation of the following methods and protocols: a.

View Article and Find Full Text PDF

Hydrogen production from biomass pyrolysis is attractive since it allows for green hydrogen production through feedstock and thermal conversion. However, the key limiting factors for hydrogen production are the high oxygen content, uneven heating of biomass pellets during the slow heating process, and insufficient depolymerization due to low reaction temperatures (low gas yields and low hydrogen content). To address these challenges, fast pyrolysis of super Arundo in NaOH-NaCO molten salt was carried out in this paper at 450 °C, 550 °C and 650 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!