The plant exposures are one of the most frequent poisonings reported to poison control centres. The diagnosis of intoxicated patients is usually based on the morphological analysis of ingested plant portions; this procedure requires experience in systematic botany, because the plant identification is based on few evident traits. The objective of this research is to test DNA barcoding approach as a new universal tool to identify toxic plants univocally and rapidly. Five DNA barcode regions were evaluated: three cpDNA sequences (trnH-psbA, rpoB and matK) and two nuclear regions (At103 and sqd1). The performance of these markers was evaluated in three plant groups: (1) a large collection of angiosperms containing different toxic substances, (2) congeneric species showing different degrees of toxicity and (3) congeneric edible and poisonous plants. Based on assessments of PCR, sequence quality and resolution power in species discrimination, we recommend the combination of plastidial and nuclear markers to identify toxic plants. Concerning plastidial markers, matK and trnH-psbA showed consistent genetic variability. However, in agreement with CBOL Plant Working Group, we selected matK as the best marker, because trnH-psbA showed some problems in sequences sizes and alignments. As a final and relevant observation, we also propose the combination of matK with a nuclear marker such as At103 to distinguish toxic hybrids form parental species. In conclusion, our data support the claim that DNA barcoding is a powerful tool for poisonous plant identifications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00414-010-0447-3 | DOI Listing |
Nat Methods
January 2025
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
Naturally occurring DNA inversion systems play an important role in the generation of genetic variation and adaptation in prokaryotes. Shufflon invertase (SI) from plasmid R64, recognizing asymmetric sites, has been adopted as a tool for synthetic biology. However, the availability of a single enzyme with moderate rates of recombination has hampered the more widespread use of SIs.
View Article and Find Full Text PDFMol Biol Rep
January 2025
School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.
Background: Paeonia lactiflora Pall., a member of Paeoniaceae family, is a medicinal herb widely used in traditional Chinese medicine. Chloroplasts are multifunctional organelles containing distinct genetic material.
View Article and Find Full Text PDFMycoKeys
January 2025
Fungal Biology and Systematics Research Laboratory, Institute of Botany, University of the Punjab, Quaid-e-Azam Campus 54590, Lahore, Pakistan University of the Punjab Lahore Pakistan.
During macrofungal surveys in 2019-2024, several specimens belonging to the family Psathyrellaceae were collected from the bed of the Indus River, Punjab, Pakistan. Phylogenetic analyses, based on ITS, LSU, and tef-1α sequences and morpho-anatomical study, confirmed the novelty and placement of three taxa in the genus . They are described as , , and .
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
Interactions between microbial communities and the host can modulate mosquito biology, including vector competence. Therefore, future vector biocontrol measures will utilize these interactions and require extensive monitoring of the mosquito microbiome. Metabarcoding strategies will be useful for conducting vector monitoring on a large scale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!