The role of neuropeptide FF (NPFF) and its analogs in pain modulation is ambiguous. Although NPFF was first characterized as an antiopioid peptide, both antinociceptive and pronociceptive effects have been reported, depending on the route of administration. Currently, two NPFF receptors, termed FF1 and FF2, have been identified and cloned, but their roles in pain modulation remain elusive because of the lack of availability of selective compounds suitable for systemic administration in in vivo models. Ligand-binding studies confirm ubiquitous expression of both subtypes in brain, whereas only FF2 receptors are expressed spinally. This disparity in localization has served as the foundation of the hypothesis that FF1 receptors mediate the pronociceptive actions of NPFF. We have identified novel small molecule NPFF receptor agonists and antagonists with varying degrees of FF2/FF1 functional selectivity. Using these pharmacological tools in vivo has allowed us to define the roles of NPFF receptor subtypes as pertains to the modulation of nociception. We demonstrate that selective FF2 agonism does not modulate acute pain but instead ameliorates inflammatory and neuropathic pains. Treatment with a nonselective FF1/FF2 agonist potentiates allodynia in neuropathic rats and increases sensitivity to noxious thermal and to non-noxious mechanical stimuli in normal rats in an FF1 antagonist-reversible manner. Treatment with FF1 antagonists reversed established mechanical allodynia, indicating the possibility of increased NPFF tone through FF1 receptors. In conclusion, we provide evidence for the opposing roles of NPFF receptors and highlight selective FF2 agonism and/or selective FF1 antagonism as potential targets warranting further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.109.164384 | DOI Listing |
Int J Mol Sci
December 2024
Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA.
Neuropeptide FF (NPFF) is an endogenous octapeptide that was originally isolated from the bovine brain. It belongs to the RFamide family of peptides that has a wide range of physiological functions and pathophysiological effects. NPFF and its receptors, NPFFR1 and NPFFR2, abundantly expressed in rodent and human brains, participate in cardiovascular regulation.
View Article and Find Full Text PDFNeuroscience
January 2025
Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China. Electronic address:
Increasing evidence indicates that neuropeptide FF (NPFF) produces analgesic effects and augments opioid-induced analgesia at the spinal level. However, our recent research demonstrated that NPFF exerted complex opioid-modulating effects in an inflammatory pain model after intrathecal (i.t.
View Article and Find Full Text PDFJ Comp Neurol
December 2024
Department of Neurology, University of Iowa, Iowa City, Iowa, USA.
Int J Mol Sci
October 2024
Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea.
This study explores the neuroprotective effects of neuropeptide FF (NPFF, FLFQPQRFamide) in the context of ischemic injury. Based on transcriptomic analysis in stroke models treated with 5-Aza-dC and task-specific training, we identified significant gene expression changes, particularly involving NPFF. To further explore NPFF's role in promoting neuronal recovery, recombinant NPFF protein (rNPFF) was used in primary mixed cortical cultures subjected to oxygen-glucose deprivation and reoxygenation.
View Article and Find Full Text PDFNeuropeptides
December 2024
Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China. Electronic address:
The neuropeptide FF (NPFF) system regulates various physiological and pharmacological functions, particularly pain modulation. However, the modulatory effect of NPFF system on itch remains unclear. To investigate the modulatory effect and functional mechanism induced by NPFF system on acute itch, we examined the effects of supraspinal administration of NPFF and related peptides on acute itch induced by intradermal (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!