A hallmark feature of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) regulation is the generation of Ca(2+)-independent autonomous activity by Thr-286 autophosphorylation. CaMKII autonomy has been regarded a form of molecular memory and is indeed important in neuronal plasticity and learning/memory. Thr-286-phosphorylated CaMKII is thought to be essentially fully active ( approximately 70-100%), implicating that it is no longer regulated and that its dramatically increased Ca(2+)/CaM affinity is of minor functional importance. However, this study shows that autonomy greater than 15-25% was the exception, not the rule, and required a special mechanism (T-site binding; by the T-substrates AC2 or NR2B). Autonomous activity toward regular R-substrates (including tyrosine hydroxylase and GluR1) was significantly further stimulated by Ca(2+)/CaM, both in vitro and within cells. Altered K(m) and V(max) made autonomy also substrate- (and ATP) concentration-dependent, but only over a narrow range, with remarkable stability at physiological concentrations. Such regulation still allows molecular memory of previous Ca(2+) signals, but prevents complete uncoupling from subsequent cellular stimulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878555PMC
http://dx.doi.org/10.1074/jbc.M109.069351DOI Listing

Publication Analysis

Top Keywords

camkii autonomy
8
autonomous activity
8
molecular memory
8
camkii
4
autonomy substrate-dependent
4
substrate-dependent stimulated
4
stimulated ca2+/calmodulin
4
ca2+/calmodulin hallmark
4
hallmark feature
4
feature ca2+/calmodulin
4

Similar Publications

CaMKII has molecular memory functions because transient calcium ion stimuli can induce long-lasting increases in its synaptic localization and calcium ion-independent (autonomous) activity, thereby leaving memory traces of calcium ion stimuli beyond their duration. The synaptic effects of two mechanisms that induce CaMKII autonomy are well studied: autophosphorylation at threonine-286 and binding to GluN2B. Here, we examined the neuronal functions of additional autonomy mechanisms: nitrosylation and oxidation of the CaMKII regulatory domain.

View Article and Find Full Text PDF

Calcium/calmodulin-dependent protein kinase II δ (CaMKIIδ) has a pivotal role in cardiac signaling. Constitutive and deleterious CaMKII "autonomous" activation is induced by oxidative stress, and the previously reported mechanism involves oxidation of methionine residues in the regulatory domain. Here, we demonstrate that covalent oxidation leads to a disulfide bond with Cys273 in the regulatory domain causing autonomous activity.

View Article and Find Full Text PDF

Neuronal activity induces intracellular Ca increase, which triggers activation of a series of Ca -dependent signaling cascades. Among these, the multifunctional Ca /calmodulin-dependent protein kinases (CaMKs, or calmodulin kinases) play key roles in neuronal transmission, synaptic plasticity, circuit development and cognition. The most investigated CaMKs for these roles in neuronal functions are CaMKI, CaMKII, CaMKIV and we will shed light on these neuronal CaMKs' functions in this review.

View Article and Find Full Text PDF

The Ca/calmodulin-dependent protein kinase II (CaMKII) is a major mediator of physiological glutamate signaling, but its role in pathological glutamate signaling (excitotoxicity) remains less clear, with indications for both neuro-toxic and neuro-protective functions. Here, the role of CaMKII in ischemic injury is assessed utilizing our mouse model of cardiac arrest and cardiopulmonary resuscitation (CA/CPR). CaMKII inhibition (with tatCN21 or tatCN19o) at clinically relevant time points (30 min after resuscitation) greatly reduces neuronal injury.

View Article and Find Full Text PDF

CaMKII isoforms differ in their specific requirements for regulation by nitric oxide.

FEBS Lett

December 2014

Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA. Electronic address:

The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) mediates physiological and pathological functions by its Ca(2+)-independent autonomous activity. Two novel mechanisms for generating CaMKII autonomy include oxidation and S-nitrosylation, the latter requiring both Cys280 and Cys289 amino acid residues in the brain-specific isoform CaMKIIα. Even though the other CaMKII isoforms have a different amino acid in the position homologous to Cys280, we show here that nitric oxide (NO)-signaling generated autonomy also for the CaMKIIβ isoform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!