Clathrin-dependent endocytosis of membrane-bound RANKL in differentiated osteoclasts.

Eur J Histochem

Clinical Department of Biomedicine, University of Trieste, Trieste, Italy.

Published: March 2010

Bone is continuously repaired and remodelled through well-coordinated activity of osteoblasts that form new bone and osteoclasts, which resorb it. Osteoblasts synthesize and secrete two key molecules that are important for osteoclast differentiation, namely the ligand for the receptor of activator of nuclear factor kappaB (RANKL) and its decoy receptor osteoprotegerin (OPG). Active membrane transport is a typical feature of the resorbing osteoclast during bone resorption. Normally, one resorption cycle takes several hours as observed by monitoring actin ring formation and consequent disappearance in vitro. During these cyclic changes, the cytoskeleton undergoes remarkable dynamic rearrangement. Active cells show a continuous process of exocytosis that plays an essential role in transport of membrane components, soluble molecules and receptor-mediated ligands thus allowing them to communicate with the environment. The processes that govern intracellular transport and trafficking in mature osteoclasts are poorly known. The principal methodological problem that have made these studies difficult is a physiological culture of osteoclasts that permit observing the vesicle apparatus in conditions similar to the in vivo conditions. In the present study we have used a number of morphological approaches to characterize the composition, formation and the endocytic and biosynthetic pathways that play roles in dynamics of differentiation of mature bone resorbing cells using a tri-dimensional system of physiologic coculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167292PMC
http://dx.doi.org/10.4081/ejh.2010.e6DOI Listing

Publication Analysis

Top Keywords

clathrin-dependent endocytosis
4
endocytosis membrane-bound
4
membrane-bound rankl
4
rankl differentiated
4
osteoclasts
4
differentiated osteoclasts
4
bone
4
osteoclasts bone
4
bone continuously
4
continuously repaired
4

Similar Publications

The cRGD peptide surface coating strategy for photothermal therapy nanoplatforms shows great promise in developing safe and effective cancer therapies. However, the precise intracellular mechanisms of these platforms remain unclear due to the complexity of intracellular trafficking and nano-bio interactions. This study investigates the nano-bio interactions of BiSe nanofoams, a representative photothermal therapy nanoplatform, coated with cRGD peptide in cancer cells, focusing on endocytosis, exocytosis, and cellular trafficking.

View Article and Find Full Text PDF

Exploring RPA1-ETAA1 axis via high-throughput data analysis: implications for PD-L1 nuclear translocation and tumor-immune dynamics in liver cancer.

Front Immunol

December 2024

Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-related Disease, Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China.

Article Synopsis
  • ETAA1 is recruited to DNA damage sites and regulates ATR activity through its interaction with RPA, which is important for PD-L1 nuclear accumulation and its role in the immune response.
  • Research indicates that the RPA1-ETAA1 axis influences various immune cell types, showing negative correlations with CD8 T and NKT cells but positive correlations with Th2 cells and other suppressive immune cells, suggesting a mechanism for immune evasion in tumors.
  • The study highlights the association of RPA1 and ETAA1 with cancer progression, particularly in liver cancer, indicating their potential as therapeutic targets beyond their traditional roles in DNA repair.
View Article and Find Full Text PDF

Synaptic vesicles (SVs) store and transport neurotransmitters to the presynaptic active zone for release by exocytosis. After release, SV proteins and excess membrane are recycled via endocytosis, and new SVs can be formed in a clathrin-dependent manner. This process maintains complex molecular composition of SVs through multiple recycling rounds.

View Article and Find Full Text PDF

() is capable of causing pneumonia, arthritis, mastitis, and various other ailments in cattle of all age groups, posing a significant threat to the healthy progression of the worldwide cattle industry. The invasion of non-phagocytic host cells serves as a pivotal mechanism enabling to evade the immune system and penetrate mucosal barriers, thereby promoting its spread. To investigate the differences in invasion into four types of non-phagocytic cells (Madin-Darby bovine kidney (MDBK) cells, embryonic bovine lung (EBL) cells, bovine embryo tracheal (EBTr) cells and bovine turbinate (BT) cells) and further elucidate its invasion mechanism, this study first optimized the experimental methods for invasion into cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!