A highly thermoconductive insulative polymer nanocomposite with a nanoporous alpha-alumina sheet was reported. The thermal conductivity of the nanocomposite along the surface normal was 12 W m(-1) K(-1) (41 vol % alumina), a value as high as that predicted theoretically for a nanocomposite with thermoconductive fillers that form a perfectly connected thermoconductive network. The high thermal conductivity is probably due to the continuous alpha-alumina phase that functions as an efficient phonon path in the nanocomposite. The results suggest that the structure of the filler is important for the design of highly thermoconductive materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am800055s | DOI Listing |
Nanomicro Lett
November 2023
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China.
Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices. However, when flexible graphene nanosheets are assembled into macroscopic thermally conductive composites, capillary forces induce shrinkage of graphene nanosheets to form wrinkles during solution-based spontaneous drying, which greatly reduces the thermal conductivity of the composites. Herein, graphene nanosheets/aramid nanofiber (GNS/ANF) composite films with high thermal conductivity were prepared by in-plane stretching of GNS/ANF composite hydrogel networks with hydrogen bonds and π-π interactions.
View Article and Find Full Text PDFDent J (Basel)
August 2023
Digital and Advanced Technique for Endodontic, Restorative and Prosthetic Treatment TADERP, 300070 Timisoara, Romania.
The heat produced during tooth preparation could be a source of damage for dental pulp, and many variables are involved in this process. The aim of this in vitro study was to evaluate whether the different degrees of wear of the diamond burs significantly influenced the temperature changes in the pulp chamber during tangential veneer preparation. The sample comprised 30 intact permanent monoradicular teeth, randomly assigned to three study groups of 10 teeth each, of which 5 had the pulp tissue preserved and 5 had thermoconductive paste in the pulp chamber.
View Article and Find Full Text PDFPolymers (Basel)
July 2023
Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
In miniaturized and integrated electronic devices, thermal potential and fire hazards caused by heat diffusion require an efficient thermal management system with versatile electronic packaging equipment. The flame retardancy was endowed on the surface of carbon nitride after thermal etching (CNNS) containing piperazine pyrophosphate (PPAP) by hydrogen bonding, and the obtained nanosheet was defined as PPAP-CNNS. During solution blending and program-controlled curing, PPAP-CNNS was used as a multifunctional filler to fabricate highly thermoconductive and fire retardant epoxy resin (EP) composites.
View Article and Find Full Text PDFNanoscale
August 2023
Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
Benefiting from its high thermal conductivity () and superior insulation, the boron nitride nanosheet (BNNS) is widely investigated as a promising filler for thermal nanocomposites. However, poor dispersibility and weak interaction with polymer matrix hinder the further improvement of BNNS-based thermal composites. Here, inspired by side-chain liquid crystal polysiloxane (SCLCP) with good mesomorphic structures, highly thermoconductive nanocomposites prepared polymerization using SCLCP with 2D BNNS are reported.
View Article and Find Full Text PDFNanomicro Lett
August 2022
College of Materials Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
A self-grinding exfoliation strategy that depends on mutual shear friction between flake graphite particles is successfully developed to prepare pristine graphene with largely enhanced yield and productivity. Bioinspired assembly of pristine graphene nanosheets to an interconnected aramid nanofiber network is achieved by a continuous sol-gel-film transformation strategy and generates a flexible yet highly thermoconductive film. Flexible yet highly thermoconductive materials are essential for the development of next-generation flexible electronic devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!