Substitution reactions of propargylic amines proceed in the presence of copper(I) catalysts. Mechanistic studies showed that C(sp)-C(sp(3)) bond cleavage assisted by nitrogen lone-pair electrons is essential for the reaction, and the resulting iminium intermediates undergo amine exchange, aldehyde exchange, and alkyne addition reactions. Because iminium intermediates are key to aldehyde-alkyne-amine (A(3)) coupling reactions, this transformation is effective not only for reconstruction of propargylic amines but also for chiral induction of racemic compounds in the presence of chiral catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja9109055DOI Listing

Publication Analysis

Top Keywords

propargylic amines
12
iminium intermediates
12
substitution reactions
8
reactions propargylic
8
csp-csp3 bond
8
bond cleavage
8
copperi-catalyzed substitution
4
reactions
4
amines csp-csp3
4
cleavage generation
4

Similar Publications

Carbon dioxide (CO2) capture and its subsequent catalytic fixation into usable compounds represent a potential approach for addressing the energy problem and the implications of global warming. Hence, it is necessary to develop effective catalytic systems required for the transformation of CO2 into valuable chemicals/fuels. Herein, we rationally designed a hydroxyl-functionalized porous organic framework (OH-POF) consisting of both acidic (OH) as well as basic N sites for the transformation of CO2 using epoxides for the production of cyclic carbonates (CCs), a useful commodity chemical under environmental-friendly, metal/solvent/co-catalyst-free conditions.

View Article and Find Full Text PDF

Monoamine oxidase B (MAO-B) is a key enzyme in the mitochondrial outer membrane, pivotal for the oxidative deamination of biogenic amines. Its overexpression has been implicated in the pathogenesis of several cancers, including glioblastoma and colorectal, lung, renal, and bladder cancers, primarily through the increased production of reactive oxygen species (ROS). Inhibition of MAO-B impedes cell proliferation, making it a potential therapeutic target.

View Article and Find Full Text PDF

A facile copper-catalyzed, base-controlled cyclization reaction has been developed for the synthesis of 9-membered cycloalkyne and 6-membered heterocycle sultams under mild conditions. This protocol utilizes a copper-catalyzed intramolecular A (alkyne-aldehyde-amine) coupling reaction to efficiently synthesize 9-membered cycloalkyne sultams in yields up to 90%. Alternatively, by substituting NaHCO with DBU, the protocol achieves selective deprotection of the -propargyl group, thereby facilitating the formation of 6-membered heterocyclic sultams, also in high yields.

View Article and Find Full Text PDF

Two novel Pd-catalyzed protocols for the controllable synthesis of benzo[]furo[2,3-]azepines and furo[3,2-]indoles have been developed by intermolecular oxidative annulation of 2-(furan-2-yl)anilines and propargyl carbonates versus intramolecular C-H amination reactions. These two protocols feature great scalability, functional group tolerance, and relatively mild reaction conditions. Notably, the robust methodologies could also provide valuable opportunities for assembling azepine-fused benzothiophene, indole-fused benzothiophene, and indole-fused benzimidazole, which may have potential applications in the synthesis of related pharmaceuticals or polymeric materials.

View Article and Find Full Text PDF

Enrichable Protein Footprinting for Structural Proteomics.

J Am Soc Mass Spectrom

December 2024

Center for Genomic Science Innovation, University of Wisconsin Madison, Madison, Wisconsin 53706, United States.

Protein footprinting is a useful method for studying protein higher order structure and conformational changes induced by interactions with various ligands via addition of covalent modifications onto the protein. Compared to other methods that provide single amino acid-level structural resolution, such as cryo-EM, X-ray diffraction, and NMR, mass spectrometry (MS)-based methods can be advantageous as they require lower protein amounts and purity. As with other MS-based proteomic methods, such as post-translational modification analysis, enrichment techniques have proven necessary for both optimal sensitivity and sequence coverage when analyzing highly complex proteomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!