Based on the meteorological and biological observation data from the temperate desert steppe ecosystem research station in Sunitezuoqi of Inner Mongolia during growth season (from May 1st to October 15th, 2008), the diurnal and seasonal characteristics of surface albedo in the steppe were analyzed, with related model constructed. In the steppe, the diurnal variation of surface albedo was mainly affected by solar altitude, being higher just after sunrise and before sunset and lower in midday. During growth season, the surface albedo was from 0.20 to 0.34, with an average of 0.25, and was higher in May, decreased in June, kept relatively stable from July to September, and increased in October. This seasonal variation was related to the phenology of canopy leaf, and affected by precipitation process. Soil water content (SWC) and leaf area index (LAI) were the key factors affecting the surface albedo. A model for the surface albedo responding to SWC and LAI was developed, which showed a good performance in consistent between simulated and observed surface albedo.
Download full-text PDF |
Source |
---|
Environ Sci Pollut Res Int
December 2024
Amrita School for Sustainable Futures, Amrita Vishwa Vidyapeetham, Amritapuri, 690525, Kerala, India.
The 'Third Pole', home to numerous glaciers, serves as vital water reserves for a significant portion of the Asian population and has garnered global attention within the context of climate change due to their highly vulnerable nature. While a general decline in global glacial extent has been observed in recent decades, the pronounced regional imbalances across the Third Pole present a perplexing anomaly. To assess the impact of glacier mass changes in the Gangotri basin, we conducted a comprehensive analysis using remote sensing data to estimate spatially resolved mass changes from 2000 to 2023.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.
Compound soil drought and heat extremes are expected to occur more frequently with global warming, causing wide-ranging socio-ecological repercussions. Vegetation modulates air temperature and soil moisture through biophysical processes, thereby influencing the occurrence of such extremes. Global vegetation cover is broadly expected to increase under climate change, but it remains unclear whether vegetation greening will alleviate or aggravate future increases in compound soil drought-heat events.
View Article and Find Full Text PDFInt J Biometeorol
December 2024
School of Landscape Architecture, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China.
The surface color and materials of sidewalk pavements exhibit different albedo characteristics, leading to varied surface urban heat island effects in subtropical regions. To quantify the effect of pavement surface color and material on SUHI, Prefabricated Concrete Structure brick (PCB), Granite brick (GB) and Dutch brick (DB) totaling 14 pavement samples in Hangzhou were placed under unshaded, cloud shaded and tree shaded conditions. CIELAB (International Commission on Illumination L*a*b*) color data, short-wave radiation (incoming and outgoing) and surface temperature were measured.
View Article and Find Full Text PDFData Brief
December 2024
Faculty of Civil Engineering and Geosciences, Department of Hydraulic Engineering, Delft University of Technology, Delft 2628 CN, the Netherlands.
A field campaign in the Vallunden lagoon in the Van Mijenfjorden on Spitsbergen was conducted to gather data on sea ice restoration by artificial flooding. Sea ice thickening was initiated by pumping sea water from below the first-year sea ice onto the surface without removing the covering snow layer. Part of the data was collected by four thermistor strings, two radiation sensors, and one anemometer.
View Article and Find Full Text PDFNanophotonics
March 2024
University of Michigan, Ann Arbor, MI, USA.
We present a radiative cooling material capable of enhancing albedo while reducing ground surface temperatures beneath fielded bifacial solar panels. Electrospinning a layer of polyacrylonitrile nanofibers, or nanoPAN, onto a polymer-coated silver mirror yields a total solar reflectance of 99 %, an albedo of 0.96, and a thermal emittance of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!