Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The final goal of this study is to develop multi-functional organic/inorganic hybrid nanoparticles, which can be utilized as biomedical imaging probes and drug delivery carriers. As an initial step toward this goal, we encapsulated CdSe/ZnS quantum dots (QDs) into poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) micelles using a solid dispersion method. The size and fluorescent intensity of QDs encapsulated in PEG-PLA micelles depended on the amount of incorporated QDs. For example, when the amount of QDs increased from 0.1 to 1.0 microg, the mean diameter increased from 24.2 +/- 6.0 to 211.2 +/- 6.5 nm and the fluorescent intensity changed from 10.2 +/- 1.0 to 469.9 +/- 15.6 (RFU). Stability studies showed that the size and zeta-potential (ZP) of QDs encapsulated in PEG-PLA micelles (QEMs) did not change significantly in response to a change in pH conditions or under a 10% serum condition. We also tested the cytotoxicity and cellular uptake of the QEMs. The viability of HeLa cells treated with micelles for 24 h was 80-100% in various concentration ranges of micelles. Confocal laser scanning microscopic images showed that the QEMs penetrated into the cells, particularly into the cytosolic compartments. Our results suggest that the QEMs may be a promising multi-functional nanocarrier for biomedical imaging and drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2010.1736 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!