The debatable article is devoted to the analysis of consecutive changes of the notion about the origin, migration, morphofunctional heterogeneity, differentiation and proliferative potential of the basic cells of a connective tissue--fibroblasts. Despite of a plenty of an actual material on this section of cellular biology, till now there is no uniform concept about fibroblasts to a full degree defining their cytogenesis, features of phenotypic answers, and position in differon organization. In this article, the data available in literature are systematized and generalized. The modern outline of fibroblastic differon is offered for the subsequent determination of role and place of its various parts in normal physiological and pathological reactions of connective tissue.
Download full-text PDF |
Source |
---|
J Vis Exp
December 2024
Department of Pharmacology, School of Medicine, Ajou University; 3D Immune System Imaging Core Center, Ajou University;
Technical hurdles in a culture of epithelial cells include dedifferentiation and loss of function. Biomimetic three-dimensional (3D) cell culture methods can enhance cell culture efficiency. This study introduces an advanced two-layered culture system intended to cultivate epithelial cells as tissue-like layers with the culture of fibroblasts within a 3D environment.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.
View Article and Find Full Text PDFCirc Cardiovasc Interv
December 2024
Cardiovascular Translational Laboratory, Providence Research and Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada (J.Y., H.G., J.J., A.L., J.G.W., J.S., D.M., S.L.S.).
Background: Transcatheter aortic valve replacement (TAVR) pushes aside the diseased native aortic valve and creates a native neo-sinus bordered by the aortic root wall and the displaced native valve. There are limited data on the progression of native valve disease post-TAVR and no previous analysis of the native neo-sinus.
Methods: Native aortic valves and native neo-sinus explants obtained post-TAVR were evaluated histologically (hematoxylin and eosin, Movat pentachrome, and Martius Scarlet Blue stains) and by immunohistochemistry (TGF-β1 [transforming growth factor-beta 1], FAP [fibroblast activation protein], and ALP [alkaline phosphatase]) to assess disease mechanisms.
Int J Biol Macromol
February 2025
Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; Institute for Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, Fântânele 30, 400294 Cluj-Napoca, Romania. Electronic address:
Medical practice has proven that chronic wounds can be treated successfully if the dressing is chosen according to the healing phase of the wound. Correct intervention from the hemostasis and inflammatory phase can prevent oxidative stress and ensure optimal conditions for healing. It is important to design a new wound dressing that does not cause additional injury, has an antioxidant effect, removes dead cells, and promotes wound healing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States.
Cell state transitions are fundamental in biology, determining how cells respond to environmental stimuli and adapt to diseases and treatments. Cell surface-based sensing of geno/phenotypes is a versatile approach for distinguishing different cell types and states. Array-based biosensors can provide a highly sensitive platform for distinguishing cells based on the differential interactions of each sensing element with cell surface components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!