Small molecules that exhibit biological effects have been successfully used to study various biological phenomena. 5-Bromodeoxyuridine (BrdU) is a thymidine analog that affects various biological processes, such as cellular differentiation and cellular senescence in cultured mammalian cells. Although BrdU is thought to modulate these phenomena by changing chromatin structure and gene expression, the molecular mechanisms for the action of BrdU are not understood well. To analyze the molecular mechanisms of BrdU with genetic methods, we used the yeast Saccharomyces cerevisiae as a model. Our genetic screening has revealed that a defect in MPT5/HTR1/UTH4/PUF5 led to an increased sensitivity to BrdU, and that overexpression of VHT1 or SDT1 led to resistance to BrdU. The increased sensitivity to BrdU caused by a defect in MPT5 was suppressed by a mutation in SIR2, SIR3, or SIR4, which is involved in chromatin silencing and transcriptional repression. These findings suggest that chromatin silencing proteins are involved in the modulation of the cellular phenomena by BrdU, and would provide clues to answer the old question of how BrdU affects various biological phenomena.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00438-010-0535-6 | DOI Listing |
Toxicol Appl Pharmacol
January 2025
Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan.
Acetamide is a hepatocarcinogen in rats. We previously revealed that acetamide induces characteristic large micronuclei in rat liver, suggesting the possible involvement of chromosome aberrations in acetamide-induced hepatocarcinogenesis. To elucidate the mechanism of large micronuclei formation, in this study we examined time-dependent changes in rat hepatocytes after administration of acetamide.
View Article and Find Full Text PDFSci Rep
January 2025
Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran.
This study investigates the interrelationship between human telomerase reverse transcriptase (hTERT) and ferroptosis in precursor-B (pre-B) acute lymphoblastic leukemia (ALL), specifically examining how hTERT modulation affects ferroptotic cell death pathways. Given that hTERT overexpression characterizes various cancer phenotypes and elevated telomerase activity is observed in early-stage and relapsed ALL, we investigated the molecular mechanisms linking hTERT regulation and ferroptosis in leukemia cells. The experimental design employed Nalm-6 and REH cell lines under three distinct conditions: curcumin treatment, hTERT siRNA knockdown, and their combination.
View Article and Find Full Text PDFCells
January 2025
School of Medicine, Newgiza University (NGU), Giza 12577, Egypt.
Meis1 is a transcription factor involved in numerous functions including development and proliferation and has been previously shown to harness cell cycle progression. In this study, we used in silico analysis to predict that miR-499-5p targets Meis1 and that Malat1 sponges miR-499-5p. For the first time, we demonstrated that the overexpression of miR-499-5p led to the downregulation of Meis1 mRNA and protein in C166 cells by directly binding to its 3'UTR.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran.
Objectives: Adjuvants are some of the most important components used for vaccine formulation. In addition, the efficacy of vaccines is highly dependent on the nature of the adjuvants used. Therefore, new adjuvant formulations may help develop more potent vaccines.
View Article and Find Full Text PDFJ Neuroendocrinol
January 2025
Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
Gonadotroph neuroendocrine pituitary tumors are among the most common intracranial neoplasms. A notable proportion of these tumors is characterized by invasive growth which hampers the treatment results and worsens prognoses of patients. Increased hsa-miR-184 expression was observed in invasive as compared to non-invasive gonadotroph tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!