MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression of other genes by transcriptional inhibition or translational repression. miR-34a is a known tumor suppressor gene and inhibits abnormal cell growth. However, its role in other tumorigenic processes is not fully known. This study aimed to investigate the action of miR-34a on cell invasion. We found that miR-34a is expressed at various levels in cervical cancer (HeLa, SiHa, C4I, C33a and CaSki) and trophoblast (BeWo and JAR) cell lines. Transient forced expression of miR-34a did not affect the proliferation of these cell lines. Computational miRNA target prediction suggested that Notch1 and Jagged1 were targets of miR-34a. By using functional assays, miR-34a was demonstrated to bind to the 3' untranslated regions of Notch1 and Jagged1. Forced expression of miR-34a altered the expression of Notch1 and Jagged1 protein as well as Notch signaling as shown by the response of Hairy Enhancer of Split-1 protein to these treatments using western blot analysis. Forced expression of miR-34a suppressed the invasiveness of HeLa and JAR cells. By using gamma-secretase inhibitor (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester) that interfered Notch signaling and RNA interference that knockdown Notch1 expression, we confirmed that downregulation of Notch1 reduced the invasiveness of the cells. Transfection of intracellular domain of Notch nullifies the effect of miR-34a on the invasiveness of the cells. Besides, we identified that miR-34a affected cell invasion by regulating expression of urokinase plasminogen activator through Notch. Our results provide evidence that miR-34a inhibits invasiveness through regulation of the Notch pathway and its downstream matrix degrading enzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/carcin/bgq066 | DOI Listing |
FASEB J
January 2025
Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
Nonunion is a significant complication in fracture management for surgeons. Salvianolic acid A (SAA), derived from the traditional Chinese plant Salviae miltiorrhizae Bunge (Danshen), exhibits notable anti-inflammatory and antioxidant properties. Although studies have demonstrated its ability to promote osteogenic differentiation, the exact mechanism of action remains unclear.
View Article and Find Full Text PDFJ Bioenerg Biomembr
January 2025
Department of Endocrinology, Tianjin 4th Center Hospital, Tianjin, 300140, China.
To investigate the role of silent information regulator 6 (SIRT6) in regulating podocyte injury in diabetic nephropathy (DN) through autophagy mediated by Notch signaling pathway. A blank control group (group A), a diabetic nephropathy group (group B), and a Sirt6 intervention group (group C) were established. The group A cells were human normal glomerular podocyte cell lines (HGPCs) without any treatment.
View Article and Find Full Text PDFCell Biol Toxicol
December 2024
Department of Ophthalmology, Nanjing Drum Tower Hospital, Nanjing, 210011, Jiangsu, China.
Herpes simplex keratitis (HSK), an ocular disease resulted from herpes simplex virus type 1 (HSV-1) infection, leads to the majority of infectious corneal blindness worldwide. The apoptosis of corneal epithelial cells (CECs) resulted from HSV-1 disrupts the epithelial barrier and exacerbates the infection; however, there is no definitive cure for HSK. Jagged1 (JAG1), one of the primary functional ligands for NOTCH receptors, plays a crucial role in regulating apoptosis and autophagy; however, its role in HSK is unclear.
View Article and Find Full Text PDFBMC Gastroenterol
December 2024
Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China.
Zhongguo Fei Ai Za Zhi
October 2024
Medical Laboratory Center, the Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi 830011, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!