MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression of other genes by transcriptional inhibition or translational repression. miR-34a is a known tumor suppressor gene and inhibits abnormal cell growth. However, its role in other tumorigenic processes is not fully known. This study aimed to investigate the action of miR-34a on cell invasion. We found that miR-34a is expressed at various levels in cervical cancer (HeLa, SiHa, C4I, C33a and CaSki) and trophoblast (BeWo and JAR) cell lines. Transient forced expression of miR-34a did not affect the proliferation of these cell lines. Computational miRNA target prediction suggested that Notch1 and Jagged1 were targets of miR-34a. By using functional assays, miR-34a was demonstrated to bind to the 3' untranslated regions of Notch1 and Jagged1. Forced expression of miR-34a altered the expression of Notch1 and Jagged1 protein as well as Notch signaling as shown by the response of Hairy Enhancer of Split-1 protein to these treatments using western blot analysis. Forced expression of miR-34a suppressed the invasiveness of HeLa and JAR cells. By using gamma-secretase inhibitor (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester) that interfered Notch signaling and RNA interference that knockdown Notch1 expression, we confirmed that downregulation of Notch1 reduced the invasiveness of the cells. Transfection of intracellular domain of Notch nullifies the effect of miR-34a on the invasiveness of the cells. Besides, we identified that miR-34a affected cell invasion by regulating expression of urokinase plasminogen activator through Notch. Our results provide evidence that miR-34a inhibits invasiveness through regulation of the Notch pathway and its downstream matrix degrading enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/bgq066DOI Listing

Publication Analysis

Top Keywords

notch1 jagged1
16
forced expression
12
expression mir-34a
12
mir-34a
11
downregulation notch1
8
mir-34a cell
8
cell invasion
8
cell lines
8
notch signaling
8
invasiveness cells
8

Similar Publications

Nonunion is a significant complication in fracture management for surgeons. Salvianolic acid A (SAA), derived from the traditional Chinese plant Salviae miltiorrhizae Bunge (Danshen), exhibits notable anti-inflammatory and antioxidant properties. Although studies have demonstrated its ability to promote osteogenic differentiation, the exact mechanism of action remains unclear.

View Article and Find Full Text PDF

To investigate the role of silent information regulator 6 (SIRT6) in regulating podocyte injury in diabetic nephropathy (DN) through autophagy mediated by Notch signaling pathway. A blank control group (group A), a diabetic nephropathy group (group B), and a Sirt6 intervention group (group C) were established. The group A cells were human normal glomerular podocyte cell lines (HGPCs) without any treatment.

View Article and Find Full Text PDF

Herpes simplex keratitis (HSK), an ocular disease resulted from herpes simplex virus type 1 (HSV-1) infection, leads to the majority of infectious corneal blindness worldwide. The apoptosis of corneal epithelial cells (CECs) resulted from HSV-1 disrupts the epithelial barrier and exacerbates the infection; however, there is no definitive cure for HSK. Jagged1 (JAG1), one of the primary functional ligands for NOTCH receptors, plays a crucial role in regulating apoptosis and autophagy; however, its role in HSK is unclear.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the effects of sinomenine hydrochloride (SH) on colitis induced by DSS in mice, focusing on the Notch signaling pathway.
  • Mice were divided into four groups and assessed for disease activity, mucosal injury, and histopathological changes, revealing that SH significantly alleviated colitis symptoms and reduced inflammation markers.
  • Results indicated that SH treatment lowered the expression of key proteins in the Notch signaling pathway and reduced pro-inflammatory cytokines, suggesting that its therapeutic effect is linked to inhibiting Notch pathway overactivation.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers analyzed GINS1 expression in LUAD tissues compared to healthy controls using various techniques, including bioinformatics, immunohistochemistry, and qRT-PCR, and manipulated GINS1 levels in cancer cell lines to assess its effects on cell proliferation, migration, and invasion.
  • * Initial results indicate variations in GINS1 expression between LUAD patients and healthy controls, and ongoing experiments aim to uncover the underlying molecular mechanisms, potentially identifying new therapeutic targets for LUAD treatment
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!