Methyltransferases (MTases) from the genus Flavivirus encode both N-7 and 2'-O activities needed for type 1 (m(7)GpppNm) cap structure formation. We performed kinetic studies to understand the mechanisms of its progressive N-7 and 2'-O methylations. Sequential N-7 to 2'-O methylation occurred via a random bi bi and processive mechanism that does not involve enzyme-RNA dissociation. Analyses of steady state kinetic parameters showed that N-7 precedes 2'-O methylation as it turnovers RNA faster (k(cat)) resulting in 2.4-fold higher catalytic efficiency. Michaelis constants for S-adenosyl-methionine (AdoMet) in both reactions were about 10-fold lower than for their respective RNA substrates, suggesting that the rate-limiting steps in methylase reactions were associated with RNA templates. In the context of long viral RNA sequences, and compared to S-adenosyl-homocysteine, sinefungin was about 60- and 12-folds more potent against dengue N-7 and 2'-O MTase activity, exhibiting IC(50) values of 30 and 41nM, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2010.03.011DOI Listing

Publication Analysis

Top Keywords

n-7 2'-o
20
higher catalytic
8
catalytic efficiency
8
2'-o methylation
8
n-7
6
2'-o
6
efficiency n-7-methylation
4
n-7-methylation responsible
4
responsible processive
4
processive n-7
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!