Triterpene saponins are a diverse group of compounds with a structure consisting of a triterpene aglycone and sugars. Identification of the sugar-transferase involved in triterpene saponin biosynthesis is difficult due to the structural complexity of triterpene saponin. Two glycosyltransferases from Glycine max, designated as GmSGT2 and GmSGT3, were identified and characterized. In vitro analysis revealed that GmSGT2 transfers a galactosyl group from UDP-galactose to soyasapogenol B monoglucuronide, and that GmSGT3 transfers a rhamnosyl group from UDP-rhamnose to soyasaponin III. These results suggest that soyasaponin I is biosynthesized from soyasapogenol B by successive sugar transfer reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2010.03.037DOI Listing

Publication Analysis

Top Keywords

glycine max
8
triterpene saponin
8
identification characterization
4
characterization glycosyltransferases
4
glycosyltransferases involved
4
involved biosynthesis
4
biosynthesis soyasaponin
4
soyasaponin glycine
4
triterpene
4
max triterpene
4

Similar Publications

Novel sustainable agricultural strategies that enhance soil nutrients and human nutrition are crucial for meeting global food production needs. Here, we evaluate the potential of "glacial flour," a naturally crushed rock produced by glaciers known to be rich in nutrients (P, K, and micronutrients) needed for plant growth. Our proof-of-concept study, investigated soybean ( var.

View Article and Find Full Text PDF

High temperatures can impede the growth and development of soybean plants, resulting in decreased yield and seed quality. Heat-induced damage can be mitigated by adjusting sowing date and selecting genotypes that are suitable for cultivation in hot climates. A 2-year (2017-2018) field experiment was conducted at Safiabad Agricultural and Natural Resources Research and Education Center, employing a split-plot design with three replications.

View Article and Find Full Text PDF

Boosting Amino Acid Synthesis with WO Sub-Nanoclusters.

Adv Mater

January 2025

College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China.

The conversion of nitrate-rich wastewater and biomass-derived blocks into high-value products using renewably generated electricity is a promising approach to modulate the artificial carbon and nitrogen cycle. Here, a new synthetic strategy of WO sub-nanoclusters is reported and supported on carbon materials as novel efficient electrocatalysts for nitrate reduction and its coupling with α-keto acids. In acidic solutions, the NH-NHOH selectivity can also optimized by adjusting the potential, with the total FE exceeding 80% over a wide potential range.

View Article and Find Full Text PDF

Plant growth-promoting rhizobacteria (PGPR) and biochar (BC) are recognized as effective biological agents for enhancing stress tolerance and mitigating heavy metal toxicity in crops. Therefore, this study aims to investigate the effects of the cadmium (Cd)-resistant PGPR strain Leclercia adecarboxylata HW04 (>4 mM Cd resistance) on soybean plants exposed to 300 μM Cd. HW04 was observed to possess the innate ability to synthesize indole-3-acetic acid and exopolysaccharides, which facilitated the absorption of Cd in the medium.

View Article and Find Full Text PDF

In the present study, we identified 22 significant SNPs, eight stable QTLs and 17 potential candidate genes associated with 100-seed weight in soybean. Soybean is an economically important crop that is rich in seed oil and protein. The 100-seed weight (HSW) is a crucial yield contributing trait.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!