Background: Despite the success of smallpox vaccination, the immunological correlates of protection are not fully understood. To investigate this question, we examined the effect of immunization with modified vaccinia Ankara (MVA) on subsequent challenge with replication-competent vaccinia virus (Dryvax).
Methods: Dryvax challenge by scarification was conducted in 36 healthy subjects who had received MVA (n = 29) or placebo (n = 7) in a previous study of doses and routes of immunization. Subjects were followed up for clinical take, viral shedding, and immune responses.
Results: MVA administration attenuated clinical takes in 21 (72%) of 29 subjects, compared with 0 of 7 placebo recipients (P = .001). Attenuation was most significant in MVA groups that received 1 x 10(7) median tissue culture infective doses (TCID(50)) intradermally (P = .001) and 1 x 10(7) TCID(50) intramuscularly (P = .001). Both duration and peak titer of viral shedding were reduced in MVA recipients. Peak neutralizing antibody responses to vaccinia virus or MVA previously induced by MVA immunization were associated with attenuated takes (P = .02) and reduced duration (P = .001) and titer (P = .005) of viral shedding.
Conclusions: MVA immunization results in clinical and virologic protection against Dryvax challenge. Protection is associated with prior induction of neutralizing antibodies to MVA or vaccinia virus. MVA administered intradermally has protective and immunologic responses similar to those of a 10-fold-higher dose given subcutaneously.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023456 | PMC |
http://dx.doi.org/10.1086/651560 | DOI Listing |
Front Immunol
January 2025
Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
Oncolytic vaccinia viruses (VVs) are potent stimulators of the immune system and induce immune-mediated tumor clearance and long-term surveillance against tumor recurrence. As such they are ideal treatment modalities for solid tumors including lung cancer. Here, we investigated the use of VVL-m12, a next-generation, genetically modified, interleukin-12 (IL-12)-armed VV, as a new therapeutic strategy to treat murine models of lung cancer and as a mechanism of increasing lung cancer sensitivity to antibody against programmed cell death protein 1 (α-PD1) therapy.
View Article and Find Full Text PDFLancet Microbe
January 2025
Emerging Pathogen Serology Group, Vaccine Development Evaluation and Preparedness Centre, UK Health Security Agency, Wiltshire, UK.
Background: In May, 2022, the first global outbreak of mpox (formerly known as monkeypox) occurred. In response, public health agencies in the UK have made smallpox vaccines available to individuals at the highest risk of infection. With mpox cases still being detected globally, novel tools are required to aid with diagnosis, serosurveillance, and the evaluation of immune responses following infection and immunisation with current and new vaccine candidates.
View Article and Find Full Text PDFFront Immunol
January 2025
Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
Pancreatic cancer is one of the most aggressive cancers and poses significant challenges to current therapies because of its complex immunosuppressive tumor microenvironment (TME). Oncolytic viruses armed with immunoregulatory molecules are promising strategies to overcome limited efficacy and target inaccessible and metastatic tumors. In this study, we constructed a tumor-selective vaccinia virus (VV) with deletions of the TK and A49 genes (VVLΔTKΔA49, VVL-DD) using CRISPR-Cas9-based homologous recombination.
View Article and Find Full Text PDFJ Med Virol
January 2025
Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brazil.
An unprecedented global outbreak caused by the monkeypox virus (MPXV) prompted the World Health Organization to declare a public health emergency of international concern on July 23, 2022. Therapeutics and vaccines for MPXV are not widely available, necessitating further studies, particularly in drug repurposing area. To this end, the standardization of in vitro infection systems is essential.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain. Electronic address:
Human enteric viruses and emerging viruses such as severe acute respiratory syndrome coronavirus 2, influenza virus and monkeypox virus, are frequently detected in wastewater. Human enteric viruses are highly persistent in water, but there is limited information available for non-enteric viruses. The present study evaluated the stability of hepatitis A virus (HAV), murine norovirus (MNV), influenza A virus H3N2 (IAV H3N2), human coronavirus (HCoV) 229E, and vaccinia virus (VACV) in reference water (RW), effluent wastewater (EW) and drinking water (DW) under refrigeration and room temperature conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!