Adhesion of the tendon, which can occur during healing of tendon repair, is negatively affected by the outcome of surgery. In this experimental study, we sought to prevent adhesion of the tendon, and determined the mechanical stiffness of repair tissue by wrapping sodium hyaluronate and carboxymethylcellulose (Seprafilm; Genzyme, Cambridge, Massachusetts) around the repaired tendon segments. The study group comprised 2 groups of 20 chickens. In group I, the right gastrocnemius tendons of the chickens were cut smoothly, and after tendon and sheath repair, the skin was sutured. In group II, the right gastrocnemius tendons of the chickens were cut, the tendons were repaired, and before skin closure, Seprafilm was wrapped around the repaired tendon segments. Plastic splints were used for holding the chickens' ankles in a neutral position, and they were allowed weight bearing for 8 weeks. In group II, anatomic space between the tendon-sheath and tendon was clear and the tendon-sheath complex was sliding easily around the repaired tendon segment, and this complex was more functional both biomechanically and histologically. Also, the Seprafilm-applied tendons (group II) were observed to be biomechanically more resistant to the tensile forces in group I. Seprafilm is an easily applied interpositional material that can be used safely to prevent adhesion during the tendon healing process.

Download full-text PDF

Source
http://dx.doi.org/10.3928/01477447-20100129-16DOI Listing

Publication Analysis

Top Keywords

adhesion tendon
12
repaired tendon
12
tendon
11
tendon healing
8
tendon repair
8
prevent adhesion
8
tendon segments
8
group gastrocnemius
8
gastrocnemius tendons
8
tendons chickens
8

Similar Publications

An Aligned-to-Random PLGA/Col1-PLGA/nHA Bilayer Electrospun Nanofiber Membrane Enhances Tendon-to-Bone Healing in a Murine Model.

Am J Sports Med

January 2025

Department of Orthopaedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, China.

Background: The challenge of achieving effective tendon-to-bone healing remains a significant concern in sports medicine, necessitating further exploration. Biomimetic electrospun nanomaterials present promising avenues for improving this critical healing process.

Purpose: To investigate the biological efficacy of a novel aligned-to-random PLGA/Col1-PLGA/nHA bilayer electrospun nanofiber membrane in facilitating tendon-to-bone healing.

View Article and Find Full Text PDF

A motion-responsive injectable lubricative hydrogel for efficient Achilles tendon adhesion prevention.

Mater Today Bio

February 2025

Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding, 071000, China.

Achilles tendon is a motor organ that is prone to tissue adhesion during its repair process after rupture. Therefore, developing motion-responsive and anti-adhesive biomaterials is an important need for the repair of Achilles tendon rupture. Here, we report an injectable lubricative hydrogel (ILH) based on hydration lubrication mechanism, which is also motion-responsive based on sol-gel reversible transmission.

View Article and Find Full Text PDF

Fabrication of a micropatterned shape-memory polymer patch with L-DOPA for tendon regeneration.

Biomater Sci

January 2025

Department of Nanobiomedical Science & BK21 FOUR micropatterned shape-memory NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.

A scaffold design for tendon regeneration has been proposed, which mimics the microstructural features of tendons and provides appropriate mechanical properties. We synthesized a temperature-triggered shape-memory polymer (SMP) using the ring-opening polymerization of polycaprolactone (PCL) with polyethylene glycol (PEG) as a macroinitiator. We fabricated a micropatterned patch using SMP capillary force lithography, which mimicked a native tendon, for providing physical cues and guiding effects.

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Background: Post-surgical tendon adhesion formation is a frequent clinical complication with limited treatment options. The aim of this study is to investigate safety and efficacy of orally administration of crocin in attenuating post-operative tendon-sheath adhesion bands in an Achilles tendon rat model.

Methods: Structural, mechanical, histological, and biochemical properties of Achilles tendons were analyzed in the presence and absence of crocin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!