Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The self-assembly of molecularly precise nanostructures is widely expected to form the basis of future high-speed integrated circuits, but the technologies suitable for such circuits are not well understood. In this work, DNA self-assembly is used to create molecular logic circuits that can selectively identify specific biomolecules in solution by encoding the optical response of near-field coupled arrangements of chromophores. The resulting circuits can detect label-free, femtomole quantities of multiple proteins, DNA oligomers, and small fragments of RNA in solution via ensemble optical measurements. This method, which is capable of creating multiple logic-gate-sensor pairs on a 2 x 80 x 80-nm DNA grid, is a step toward more sophisticated nanoscale logic circuits capable of interfacing computers with biological processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.200901996 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!