Mechanism of proximal NaCl reabsorption in the proximal tubule of the mammalian kidney.

Semin Nephrol

Department of Physiology, University of California, San Francisco 94143.

Published: March 1991

AI Article Synopsis

  • NaCl reabsorption in the mammalian proximal tubule involves both passive and active processes, with passive transport accounting for only 10-15% of total reabsorption, primarily driven by ion concentration gradients.
  • Active transport mechanisms play a major role in NaCl reabsorption, with two types of electrogenic mechanisms identified: one in the early proximal tubule coupled with organic solute transport, and another in the terminal proximal tubule with a dedicated Na entry channel, each contributing a limited percentage.
  • The majority of NaCl reabsorption occurs through a transcellular electroneutral process involving parallel ion exchangers at the apical membrane, although the specific cellular transport mechanisms are still being

Article Abstract

In the mammalian proximal tubule NaCl reabsorption occurs by both passive and active transport processes. Passive NaCl reabsorption occurs in the presence of a high luminal chloride and a low luminal bicarbonate concentration. These anion gradients provide the driving forces for diffusive Na and Cl movement. Na is driven by the lumen positive PD effected by the greater permeability of the tubular wall to Cl than to HCO3. Cl is driven by its high tubular concentration. Passive NaCl reabsorption accounts for only about 10% to 15% of total proximal NaCl transport. The remaining proximal NaCl is reabsorbed by active transport processes and occurs both in the presence or absence of anion gradients reabsorption. Two mechanisms of active NaCl reabsorption participate in active NaCl reabsorption along the proximal tubule. Firstly, active NaCl reabsorption is electrogenic. In the early proximal tubule Na enters to cell coupled to organic solute transport. This Na reabsorption generates a lumen negative PD and effects "coupled" electrogenic NaCl reabsorption. This mechanism is limited by the supply of organic solutes and is blunted by the greater Na than Cl permeability in the proximal tubule; it probably can account for no more than 10% of proximal NaCl reabsorption. In the terminal proximal tubule, the proximal straight tubule, the apical membrane appears to possess a channel for Na entry. This Na reabsorption also generates a lumen negative PD and effects "simple" electrogenic NaCl reabsorption. This mechanism is limited by the low transport capacity of this segment and probably accounts for no more than 5% to 10% of total proximal NaCl reabsorption. The great bulk of proximal NaCl reabsorption occurs along the entire proximal tubule by active, transcellular electroneutral NaCl reabsorption. The precise cellular transport mechanisms responsible for this process are only recently being defined. At the apical membrane parallel ion exchangers are responsible for NaCl entry into the cell. Na enters via the apical membrane Na-H antiporter. Cl most likely crosses the apical membrane by some combination of Cl-OH and Cl-HCO2 exchangers but not via a Cl-HCO3 exchanger. The relative contributions of Cl-OH and Cl-HCO2 exchange have not been defined. There are two important considerations in this question. First is the availbility of OH versus HCO2. Although there is an infinite supply of OH and a small equilibrium supply of HCO2, it is possible that the luminal concentration of HCO2 could be increased by an USL that raises the concentration of HCO2 to a degree sufficient to supply H2CO2 recycling for physiological transcellular Cl transport rates.(ABSTRACT TRUNCATED AT 400 WORDS)

Download full-text PDF

Source

Publication Analysis

Top Keywords

nacl reabsorption
52
proximal tubule
28
proximal nacl
24
nacl
16
reabsorption
16
apical membrane
16
proximal
13
reabsorption occurs
12
active nacl
12
reabsorption proximal
8

Similar Publications

NRBP1 and TSC22D proteins impact distal convoluted tubule physiology through modulation of the WNK pathway.

bioRxiv

December 2024

Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.

The With No lysine (WNK) kinases regulate processes such as cell volume and epithelial ion transport through the modulation of Cation Chloride Cotransporters such as the NaCl cotransporter, NCC, present in the distal convoluted tubule (DCT) of the kidney. Recently, the interaction of WNKs with Nuclear Receptor Binding Protein 1 (NRBP1) and Transforming Growth Factor β-Stimulated Clone 22 Domain (TSC22D) proteins was reported. Here we explored the effect of NRBP1 and TSC22Ds on WNK signaling in vitro and in the DCT.

View Article and Find Full Text PDF

Update on NKCC2 regulation in the thick ascending limb (TAL) by membrane trafficking, phosphorylation, and protein-protein interactions.

Front Physiol

December 2024

Department of Internal Medicine, Hypertension and Vascular Research Division, Henry ford hospital, Detroit, MI, United States.

Purpose Of Review: The thick ascending limb (TAL) of loop of Henle is essential for NaCl, calcium and magnesium homeostasis, pH balance and for urine concentration. NKCC2 is the main transporter for NaCl reabsorption in the TAL and its regulation is very complex. There have been recent advancements toward understanding how NKCC2 is regulated by protein trafficking, protein-protein interaction, and phosphorylation/dephosphorylation.

View Article and Find Full Text PDF

A brief history of the cortical thick ascending limb: a systems-biology perspective.

Am J Physiol Renal Physiol

January 2025

Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States.

Article Synopsis
  • The cortical thick ascending limb (CTAL) of the kidney was first characterized by Maurice Burg in 1973, revealing its role in actively reabsorbing NaCl while having low water permeability, allowing it to produce dilute urine during high water intake.
  • In the 1980s, Greger and Schlatter identified the specific membrane transport processes for NaCl, which were further characterized at the molecular level by various researchers in the 1990s using cDNA cloning and advancements in genome sequencing.
  • By the 2010s, mathematical models were developed to explore CTAL transport mechanisms, leading to investigations into Burg's 'static head' phenomenon, the adaptation of short CTALs in juxtamedullary nephrons,
View Article and Find Full Text PDF

A considerable amount of NaCl reabsorption in proximal tubules (PTs) occurs via the paracellular transport regulated by the tight junction proteins claudins (Cldns). However, the paracellular transport properties in mouse superficial PTs remain unclear. We characterized these properties in superficial PT S1-S3 segments from mice expressing [wild-type (WT, WTS1-WTS3)] or lacking [knockout (KO, KOS1-KOS3)] claudin-2.

View Article and Find Full Text PDF

The FSGS protein actinin-4 interacts with NKCC2 to regulate thick ascending limb NaCl reabsorption.

Am J Physiol Renal Physiol

December 2024

Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, United States.

In the kidney, the thick ascending limb (TAL) of the loop of Henle plays a vital role in NaCl homeostasis and blood pressure regulation. In human and animal models of salt-sensitive hypertension, NaCl reabsorption via the apical Na/K/2Cl cotransporter (NKCC2) is abnormally increased in the TAL. We showed that NaCl reabsorption is controlled by the presence of NKCC2 at the apical surface of TALs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!