A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Determination of beta-glucosidase activity in soils with a bioanalytical sensor modified with multiwalled carbon nanotubes. | LitMetric

Determination of beta-glucosidase activity in soils with a bioanalytical sensor modified with multiwalled carbon nanotubes.

Anal Bioanal Chem

INQUISAL, Departmento de Química Analítica, Universidad Nacional de San Luis-CONICET, Chacabuco y Pedernera, D5700BWS San Luis, Argentina.

Published: June 2010

Soil microorganisms and enzymes are the primary mediators of soil biological processes, including organic matter degradation, mineralization, and nutrient recycling. They play an important role in maintaining soil ecosystem quality and functional diversity. Moreover, enzyme activities can provide an indication of quantitative changes in soil organic matter. Beta-glucosidase (beta-Glu) activity has been found to be sensitive to soil management and has been proposed as a soil quality indicator because it provides an early indication of changes in organic matter status and its turnover. The aims of the present study were to test and use a simple and convenient procedure for the assay of beta-Glu activity in agricultural soil. The method described here is based on the enzymatic degradation of cellobiose by beta-Glu present in the soil sample and the subsequent determination of glucose produced by the enzymatic reaction using screen-printed carbon electrodes modified with multiwalled carbon nanotubes (SPCE-CNT) equipped with coimmobilized glucose oxidase and horseradish peroxidase enzymes. The potential applied to the SPCE-CNT detection was -0.15 V versus a Ag/AgCl pseudo-reference electrode. A linear calibration curve was obtained in the range 2.7-11.3 mM with a correlation coefficient. In the present study, an easy and effective SPCE-CNT-modified electrode allowed an improved amperometric response to be achieved and this is attributed to the increased surface area upon electrode modification.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-010-3634-7DOI Listing

Publication Analysis

Top Keywords

organic matter
12
modified multiwalled
8
multiwalled carbon
8
carbon nanotubes
8
soil
8
beta-glu activity
8
determination beta-glucosidase
4
beta-glucosidase activity
4
activity soils
4
soils bioanalytical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!