Regulation of pre-mRNA splicing in Xenopus oocytes by targeted 2'-O-methylation.

RNA

Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA.

Published: May 2010

The 2'-OH group of the branch point adenosine is a key moiety to initiate pre-mRNA splicing. We use RNA-guided RNA modification to target the pre-mRNA branch point adenosine for 2'-O-methylation, with the aim of blocking pre-mRNA splicing in vertebrate cells. We show that, under certain conditions, injection of a branch point-specific artificial box C/D RNA into Xenopus oocytes effectively 2'-O-methylates adenovirus pre-mRNA at the target nucleotide. However, 2'-O-methylation at the authentic branch point activates a host of cryptic branch points, thus allowing splicing to continue. These cryptic sites are mapped, and mutated. Upon injection, pre-mRNA free of cryptic branch points fails to splice when the branch point-specific box C/D RNA is present. However, 2'-O-methylation at the branch point does not prevent pre-mRNA from being assembled into pre-catalytic spliceosome-like complexes prior to the first chemical step of splicing. Our results demonstrate that RNA-guided pre-mRNA modification can occur in the nucleoplasm of vertebrate cells, thus offering a powerful tool for molecular biology research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856880PMC
http://dx.doi.org/10.1261/rna.2060210DOI Listing

Publication Analysis

Top Keywords

branch point
16
pre-mrna splicing
12
xenopus oocytes
8
branch
8
point adenosine
8
vertebrate cells
8
branch point-specific
8
box c/d
8
c/d rna
8
cryptic branch
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!