Fecal indicator bacteria (FIB), commonly used to regulate sanitary water quality, cannot discriminate among sources of contamination. The use of alternative quantitative PCR (qPCR) methods for monitoring fecal contamination or microbial source tracking requires an understanding of relationships with cultivated FIB, as contamination ages under various conditions in the environment. In this study, the decay rates of three Bacteroidales 16S rRNA gene markers (AllBac for general contamination and qHF183 and BacHum for human-associated contamination) were compared with the decay rate of cultivated Escherichia coli in river water microcosms spiked with human wastewater. The following five sets of microcosms were monitored over 11 days: control, artificial sunlight, sediment exposure, reduced temperature, and no autochthonous predation. Decay was characterized by estimation of the time needed to produce a 2-log reduction (t(99)). No treatment-associated differences in the decay of the 4 targets were evident except with reduced predation, where E. coli, qHF183, and BacHum markers had lower levels of decay by day 3. However, there were substantial target-associated differences. Decay curves for the AllBac marker indicated a larger persistent population than those of the other targets. Exposure to sunlight, sediment, and reduced predation resulted in more rapid decay of the human-associated markers relative to cultivable E. coli, but there were no differences in t(99) values among the 4 targets under control conditions or at reduced temperatures. Further evaluation of epidemiological relationships will be needed in order to relate the markers directly to health risk. These findings suggest that the tested human-associated markers can complement E. coli as indicators of the human impact on sanitary water quality under the constrained conditions described in this paper.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869114 | PMC |
http://dx.doi.org/10.1128/AEM.02636-09 | DOI Listing |
Sci Total Environ
January 2025
China National Environmental Monitoring Centre, Beijing 100012, China.
The riverine dissolved organic matter (DOM) pool constitutes the largest and most dynamic organic carbon reservoir within inland aquatic systems. Human activities significantly alter the distribution of organic matter (OM) in rivers, thereby affecting the availability of DOM. However, the impact of total suspended solids (TSS) on DOM under anthropogenic influence remains insufficiently elucidated.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
Polyunsaturated fatty acids (PUFAs) play a crucial role in aiding bacteria to adapt to extreme and stressful environments. While there is a well-established understanding of their production, accrual, and transfer within marine ecosystems, knowledge about terrestrial environments remains limited. Investigation of the intestinal microbiome of earthworms has illuminated the presence of PUFAs presumably of microbial origin, which contrasts with the surrounding soil.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Considering that the human microbiota plays a critical role in health and disease, an accurate and high-resolution taxonomic classification is thus essential for meaningful microbiome analysis. In this study, we developed an automatic system, named MultiTax pipeline, for generating taxonomy from full-length 16S rRNA sequences using the Genome Taxonomy Database and other existing reference databases. We first constructed the MultiTax-human database, a high-resolution resource specifically designed for human microbiome research and clinical applications.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
Background: Osteoarthritis (OA) is increasingly thought to be a multifactorial disease in which sustained gut inflammation serves as a continued source of inflammatory mediators driving degenerative processes at distant sites such as joints. The objective of this study was to use the equine model of naturally occurring obesity associated OA to compare the fecal microbiome in OA and health and correlate those findings to differential gene expression synovial fluid (SF) cells, circulating leukocytes and cytokine levels (plasma, SF) towards improved understanding of the interplay between microbiome and immune transcriptome in OA pathophysiology.
Methods: Feces, peripheral blood mononuclear cells (PBMCs), and SF cells were isolated from healthy skeletally mature horses (n=12; 6 males, 6 females) and those with OA (n=6, 2 females, 4 males).
Food Sci Nutr
January 2025
Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences Sylhet Agricultural University Sylhet Bangladesh.
The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve , which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing (STEC) isolated from SCM milk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!