Stings of Indian red scorpion (Mesobuthus tamulus, MBT) produce neurological abnormalities such as convulsions and paralysis. These parameters indicate the activity at alpha-motoneuron. The present study was therefore, undertaken to evaluate the effect of MBT-venom on spinal reflexes and the involvement of N-methyl-d-aspartate (NMDA) receptors. The experiments were performed on isolated hemisected spinal cords from 4 to 6 days old rats. Stimulation of a dorsal root with supramaximal strength at 0.1Hz evoked monosynaptic (MSR) and polysynaptic reflex (PSR) potentials in the corresponding segmental ventral root. Superfusion of MBT-venom depressed the spinal reflexes in a time- and a concentration-dependent (0.1-1microg/ml) manner. MBT-venom at 0.1, 0.3 and 1.0microg/ml produced maximal depression of 55, 75 and 90% at 30, 10 and 7min, respectively. The time required to produce 50% depression (T-50) of MSR was 19.0, 8.0, and 3.6min and for PSR was 15.0, 5.6, and 2.9min at 0.1, 0.3 and 1microg/ml of venom, respectively. Pre-treatment with DL-alpha-2-amino-5-phosphonovaleric acid (APV) decreased MSR by 26% and abolished PSR. In the presence of APV, the MBT-venom-induced depression of MSR was not different from the venom only group. The results indicate that venom-induced depression of spinal reflexes did not involve NMDA receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2010.03.052 | DOI Listing |
J Med Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2100, Denmark.
NMDA receptor ligands have therapeutic potential in neurological and psychiatric disorders. We designed ()-3-(5-thienyl)carboxamido-2-aminopropanoic acid derivatives with nanomolar agonist potencies at NMDA receptor subtypes (GluN12/A-D). These compounds are superagonists at GluN1/2C compared to glycine and partial to full agonists at GluN1/2A and GluN1/2D but display functional antagonism at GluN1/2B due to low agonist efficacy.
View Article and Find Full Text PDFJ Xenobiot
January 2025
School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
Chlorpyrifos (CPF) is a broad-spectrum organophosphate insecticide. Long-term exposure to low levels of CPF is associated with neurodevelopmental and neurodegenerative disorders. The mechanisms leading to these effects are still not fully understood.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, 770-8504, Tokushima, Japan. Electronic address:
The balance of activity between glutamatergic and GABAergic networks is particularly important for oscillatory neural activities in the brain. Here, we investigated the roles of GABA receptors in network oscillation in the oral somatosensory cortex (OSC), focusing on NMDA receptors. Neural oscillation at the frequency of 8-10 Hz was elicited in rat brain slices after caffeine application.
View Article and Find Full Text PDFBehav Brain Res
January 2025
Laboratorio de Neurobiología, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico. Electronic address:
Ketamine hydrochloride serves multiple purposes, including its use as a general anesthetic, treatment for depression, and recreational drug. In studies involving rodents, ketamine is utilized as a model for schizophrenia. However, it is unclear whether age affects the behavioral response induced by repeated ketamine administration and if it modifies the expression levels of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and purinergic receptors (P2X1, P2X4, P2X7).
View Article and Find Full Text PDFInt J Neurosci
January 2025
Department of Mathematics, Payame Noor University, Tehran, Iran.
The developing brain undergoes a remarkable process of synapse production and maturation, particularly in glutamatergic synapses. In this study, we focused on the locus coeruleus (LC) nucleus, a brain region crucial for cognitive functions, to investigate the developmental changes in glutamatergic synaptic connections. Using the whole-cell patch clamp method, we recorded evoked excitatory postsynaptic currents (eEPSCs) from LC neurons in rats at ages 7, 14, and 21 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!