The retroviral Gag protein is the only viral product that is necessary for the assembly of virions in mammalian cells. We have established an in vitro assembly system to study the assembly properties of purified feline immunodeficiency virus (FIV) Gag protein expressed in bacteria. Under fully defined conditions, the FIV Gag protein assembles into spherical particles of 33 nm in diameter which are morphologically similar to authentic immature particles, albeit smaller than virions. The in vitro assembly of FIV Gag into particles was found to be resistant to the addition of Triton X-100 and required the presence of RNA. Notably, we found that an amino acid substitution in the nucleocapsid domain of Gag that impairs RNA binding and blocks virion production in vivo, also abrogates Gag assembly in vitro. The development of an in vitro assembly system for FIV Gag protein will facilitate the study of the mechanisms by which this protein assembles into immature particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virusres.2010.03.012 | DOI Listing |
Adv Healthc Mater
January 2025
INL - International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics group, Av. Mestre José Veiga s/n, Braga, 4715-330, Portugal.
Toward the aim of reducing animal testing, innovative in vitro models are required. Here, this study proposes a novel smart polymeric microscaffold to establish an advanced 3D model of dopaminergic neurons. These scaffolds are fabricated with Ormocomp via Two-Photon Polymerization.
View Article and Find Full Text PDFChembiochem
January 2025
Sun Yat-Sen University, School of Pharmaceutical Sciences (Shenzhen), 132, East Outer Ring Road, Panyu, 518107, Shenzhen, CHINA.
In clinical practice, thymopentin (TP-5) is a commonly utilized immunomodulatory peptide drug. The relatively short half-life of TP-5, however, significantly limits its applicability in immunotherapy. Inspired by the structure of the TLR2 ligand lipopeptide Pam3CSK4, fatty acid-modified TP-5 peptides were designed and synthesized in this study.
View Article and Find Full Text PDFNanoscale
January 2025
Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, P. R. China.
Gold nanorods (AuNRs) have shown great potential as photothermal agents for cancer therapy. However, the biosafety of AuNRs ordinarily synthesized using a cationic ligand assistance procedure has always been a subject of controversy, which limits their application in tumor therapy. In this study, we propose a novel strategy to enhance the biocompatibility of AuNRs by constructing a biological coating derived from silk fibroin (SF) on their surface.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong, 529525, China.
Objective: Eugenol (EU) from cloves is highly effective against different tumors. The long noncoding ribonucleic acids (lncRNAs), which play a role of competing endogenous RNAs (ceRNAs), suppress microRNAs (miRNAs) involved in post-transcriptional regulatory networks. The present work focused on analyzing how EU affected pre-cancerous breast lesions (PBL).
View Article and Find Full Text PDFEMBO J
January 2025
Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
Chromosome segregation relies on kinetochores that assemble on specialized centromeric chromatin containing a histone H3 variant. In budding yeast, a single centromeric nucleosome containing Cse4 assembles at a sequence-defined 125 bp centromere. Yeast centromeric sequences are poor templates for nucleosome formation in vitro, suggesting the existence of mechanisms that specifically stabilize Cse4 nucleosomes in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!