The "single-section" Golgi method adapted for formalin-fixed human brain and light microscopy.

J Neurosci Methods

Program in Neuroscience, Institute of Basic Sciences, Federal University of Rio Grande do Sul, R. Sarmento Leite 500, Porto Alegre RS 90050-110, Brazil.

Published: May 2010

The Golgi method has been used for over a century to describe the general morphology of neurons in the nervous system of different species. The "single-section" Golgi method of Gabbott and Somogyi (1984) and the modifications made by Izzo et al. (1987) are able to produce consistent results. Here, we describe procedures to show cortical and subcortical neurons of human brains immersed in formalin for months or even years. The tissue was sliced with a vibratome, post-fixed in a combination of paraformaldehyde and picric acid in phosphate buffer, followed by osmium tetroxide and potassium dicromate, "sandwiched" between cover slips, and immersed in silver nitrate. The whole procedure takes between 5 and 11 days to achieve good results. The Golgi method has its characteristic pitfalls but, with this procedure, neurons and glia appear well-impregnated, allowing qualitative and quantitative studies under light microscopy. This contribution adds to the basic techniques for the study of human nervous tissue with the same advantages described for the "single-section" Golgi method in other species; it is easy and fast, requires minimal equipment, and provides consistent results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2010.03.018DOI Listing

Publication Analysis

Top Keywords

golgi method
20
"single-section" golgi
12
light microscopy
8
method
5
method adapted
4
adapted formalin-fixed
4
formalin-fixed human
4
human brain
4
brain light
4
golgi
4

Similar Publications

Rapid and Green Anion-Assisted Mechanochemical Peptide Cyclization.

ACS Sustain Chem Eng

January 2025

Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.

A novel mechanochemical approach is described for chloride-templated head-to-tail macrocyclization of a pentapeptide and a hexapeptide. This straightforward method allows the solvent-free preparation of cyclopeptides with yields comparable to solution-based approaches without the need for high dilution of the reaction mixture and with significantly reduced reaction times and organic waste amount.

View Article and Find Full Text PDF

The objective of this study was to identify key secretory protein-encoding differentially expressed genes (SP-DEGs) in adipose tissue in female metabolic syndrome, thus detecting potential targets in treatment. We examined gene expression profiles in 8 women with metabolic syndrome and 7 healthy, normal body weight women. A total of 143 SP-DEGs were screened, including 83 upregulated genes and 60 downregulated genes.

View Article and Find Full Text PDF

Objectives: Endoplasmic reticulum (ER) stress-induced protein homeostasis perturbation is a core pathological element in the pathogenesis of neurodegenerative diseases. This study aims to clarify the unique role played by C/EBP homologous protein (CHOP) as a biomarker of the unfolded protein response (UPR) in the etiology of chronic pain and related cognitive impairments following chronic constrictive nerve injury (CCI).

Methods: The memory capability following CCI was assessed utilizing the Morris water maze (MWM) and fear conditioning test (FCT).

View Article and Find Full Text PDF

Cytotoxic immune cells mediate precise attacks against diseased cells to maintain organismal health. Their operational unit of killing and host defense is lytic granules (LGs), which are specialized lysosomal-related organelles. Precision in cytotoxicity is achieved by converging the many LGs to the microtubule-organizing center (MTOC) and polarizing these to the diseased cell for secretion.

View Article and Find Full Text PDF

The current state of cancer treatment has encountered limitations, with each method having its own drawbacks. The emergence of nanotechnology in recent years has highlighted its potential in overcoming these limitations. Nanomedicine offers various drug delivery mechanisms, including passive, active, and endogenous targeting, with the advantage of modifiability and shapability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!