Background: A greater incidence of varicose veins has been reported in premenopausal women than in men. We hypothesized that the sex differences in venous function reflect reduced constriction and enhanced venous dilation in women due to direct venous relaxation effects of estrogen on specific estrogen receptors (ER).

Methods: Circular segments of inferior vena cava (IVC) from male and female Sprague-Dawley rats were suspended between two wires, and isometric contraction (in mg/mg tissue) to phenylephrine, angiotensin II (AngII), and 96 mM KCl was measured. To investigate sex differences in venous smooth muscle, Ca(2+) release from the intracellular stores, and Ca(2+) entry from the extracellular space, the transient phenylephrine contraction in 0 Ca(2+) Krebs was measured. Extracellular CaCl(2) (0.1, 0.3, 0.6, 1, 2.5 mM) was added, and the [Ca(2+)](e)-dependent contraction was measured. To investigate sex differences in venous endothelial function, acetylcholine-induced relaxation was measured. To test the role of specific ERs, the amount of venous tissue ERs was measured using Western blots, and the venous relaxation in response to 17beta-estradiol (E2, activator of most ERs), 4,4,'4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)-tris-phenol (PPT; ERalpha agonist), 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN; ERbeta agonist), and ICI 182,780 (ERalpha/ERbeta antagonist, and G protein-coupled receptor 30 [GPR30] agonist) was measured in IVC segments nontreated or treated with the nitric oxide synthase (NOS) inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME).

Results: Phenylephrine caused concentration-dependent contraction that was less in female (max 104.2 +/- 16.2) than male IVC (172.4 +/- 20.4). AngII (10(-6))-induced contraction was also less in female (81.0 +/- 11.1) than male IVC (122.5 +/- 15.0). Phenylephrine contraction in 0 Ca(2+) Krebs was insignificantly less in female (4.8 +/- 1.8) than male IVC (7.2 +/- 1.7), suggesting little difference in the intracellular Ca(2+) release mechanism. In contrast, the [Ca(2+)](e)-dependent contraction was significantly reduced in female than male IVC. Also, contraction to membrane depolarization by 96 mM KCl, which stimulates Ca(2+) influx, was less in female (129.7 +/- 16.7) than male IVC (319.7 +/- 30.4), supporting sex differences in Ca(2+) entry. Acetylcholine relaxation was greater in female (max 80.6% +/- 4.1%) than male IVC (max 48.0% +/- 6.1%), suggesting sex differences in the endothelium-dependent relaxation pathway. Western blots revealed greater amounts of ERalpha, ERbeta, and GPR30 in female than male IVC. ER agonists caused concentration-dependent relaxation of phenylephrine contraction in female IVC. E2-induced relaxation (max 76.5% +/- 3.4%) was more than DPN (74.8% +/- 9.1%), PPT (71.4% +/- 12.5%), and ICI 182,780 (67.4% +/- 7.8%), and was similar in L-NAME-treated and nontreated IVC.

Conclusion: The reduced alpha-adrenergic, AngII, depolarization-induced, and [Ca(2+)](e)-dependent venous contraction in female rats is consistent with sex differences in the Ca(2+) entry mechanisms, possibly due to enhanced endothelium-dependent vasodilation and increased ER expression/activity in female rats. E2/ER-mediated venous relaxation in female rats is not prevented by NOS blockade, suggesting activation of an NO-independent relaxation pathway. The decreased venous contraction and enhanced E2/ER-mediated venous relaxation would lead to more distensible veins in female rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847594PMC
http://dx.doi.org/10.1016/j.jvs.2009.11.074DOI Listing

Publication Analysis

Top Keywords

male ivc
28
sex differences
24
venous relaxation
20
contraction female
16
female rats
16
female
14
+/-
14
venous
12
differences venous
12
ca2+ entry
12

Similar Publications

Background: Hepatocellular carcinoma (HCC) associated with major vasculature tumor extension is considered an advanced stage of disease to which palliative radiotherapy or chemotherapy is proposed. Surgical resection associated with chemotherapy or chemoembolization could be an opportunity to improve overall survival and recurrence-free survival in selected cases in a high-volume hepatobiliary center. Moreover, it has been 25 years since Couinaud described the entity of a posterior liver located behind an axial plane crossing the portal bifurcation.

View Article and Find Full Text PDF

In renal cell carcinoma (RCC) patients with inferior vena cava (IVC) tumor thrombus, neoadjuvant therapy could alleviate the burden of tumor thrombus, enhance the safety and feasibility of surgical resection, and improve patient prognosis. The combination of tislelizumab and axitinib has demonstrated efficacy in the treatment of advanced RCC. Our study aimed to evaluate the efficacy and safety in the neoadjuvant therapy setting of tislelizumab and axitinib in RCC patients with IVC tumor thrombus.

View Article and Find Full Text PDF

Iatrogenic diversion of inferior vena cava to the left atrium presented as persistent hypoxemia: Case series.

Medicine (Baltimore)

January 2025

Department of Center for Pulmonary Vascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Rationale: The transcatheter closure and atrioseptopexy are the main treatment methods for atrial septal defect (ASD). However, persistent hypoxemia due to iatrogenic diversion of inferior vena cava (IVC) to the left atrium (LA) is reported as a rare complication after ASD closure. Contrast echocardiology is a reliable and powerful tool to detect iatrogenic diversion and identify the etiology accurately.

View Article and Find Full Text PDF

Background And Aims: Bendopnea is a symptom found in patients with heart failure (HF) defined as shortness of breath when bending forward. The present study examined the correlation between bendopnea with other cardiac symptoms, echocardiographic findings, and cardiac function parameters.

Methods: This was a single-center prospective cross-sectional study of patients diagnosed with systolic HF.

View Article and Find Full Text PDF

Klippel-Trenaunay syndrome (KTS) is a rare congenital vascular disorder involving varicosities, cutaneous vascular malformations, and hypertrophy of soft tissues and bones. It is often linked to gene mutations. It affects the lymphatic, capillary, and venous systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!