Background: Practical sessions in undergraduate medical education are often costly and have to face constraints in terms of available laboratory time and practice materials (e.g. blood samples from animals). This makes it difficult to increase the time each student spends at the laboratory. We consider that it would be possible to improve the effectiveness of the laboratory time by providing the students with computer-based simulations for prior rehearsal. However, this approach still presents issues in terms of development costs and distribution to the students.

Objective: This study investigates the employment of low-cost simulation to allow medical students to rehearse practical exercises through a web-based e-learning environment. The aim is to maximize the efficiency of laboratory time and resources allocated by letting students become familiarized with the equipment and the procedures before they attend a laboratory session, but without requiring large-scale investment. Moreover, students can access the simulation via the Internet and rehearse at their own pace. We have studied the effects of such a simulation in terms of impact on the laboratory session, learning outcomes and student satisfaction.

Methods: We created a simulation that covers the steps of a practical exercise in a Physiology course (measuring hematocrit in a blood sample). An experimental group (EG, n=66) played the simulation 1 week before the laboratory session. A control group (CG, n=77) attended the laboratory session without playing the simulation. After the session, all students completed a survey about their perception of the difficulty of the exercise on a scale of 1-10 and the HCT final value that they obtained. The students in the EG also completed a survey about their satisfaction with the experience.

Results: After the laboratory session, the perceived difficulty of the procedure was lower on average in the EG compared to the CG (3.52 vs. 4.39, 95% CI: 0.16-1.57, P=.016). There was no significant difference in terms of perceived difficulty using the equipment. The HCT measures reported by the EG group also presented a much lower dispersion, meaning a higher reliability, in determining the HCT value (3.10 vs. 26.94, SD; variances significantly different, P<.001, F: 75.25, Dfd: 68.19 for EG and CG). In the satisfaction test, the majority of the students in the EG reported that the experience was positive or very positive (80.7%) and reported that it had helped them to identify and use the equipment (78%) and to perform the exercise (66%).

Conclusions: The simulation was well received by students in the EG, who felt more comfortable during the laboratory session, and it helped them to perform the exercise better, obtaining more accurate results, which indicates more effective training. EG students perceived the procedure as easier to perform, but did not report an improvement in the perceived difficulty in using the equipment. The increased reliability demonstrates that low-cost simulations are a good complement to the laboratory sessions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijmedinf.2010.01.017DOI Listing

Publication Analysis

Top Keywords

laboratory session
20
laboratory time
12
laboratory
9
medical education
8
students completed
8
completed survey
8
perceived difficulty
8
simulation
7
students
6
session
6

Similar Publications

Importance: Sleep disorders and mild cognitive impairment (MCI) commonly coexist in older adults, increasing their risk of developing dementia. Long-term tai chi chuan has been proven to improve sleep quality in older adults. However, their adherence to extended training regimens can be challenging.

View Article and Find Full Text PDF

Intelligent biology and medicine: Accelerating innovative computational approaches.

Comput Struct Biotechnol J

November 2024

Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

In this editorial, we summarize the 2023 International Conference on Intelligent Biology and Medicine (ICIBM 2023) conference which was held on July 16-19, 2023 in Tampa, Florida, USA. We then briefly describe the nine research articles included in this special issue. ICIBM 2023 scientific program included four tutorials and workshops, four keynote lectures, four eminent scholars' presentations, 11 concurrent scientific sessions, and a poster session.

View Article and Find Full Text PDF

In vivo calcium imaging in freely moving rats using miniscopes provides valuable information about the neural mechanisms of behavior in real time. A gradient index (GRIN) lens can be implanted in deep brain structures to relay activity from single neurons. While such procedures have been successful in mice, few reports provide detailed procedures for successful surgery and long-term imaging in rats, which are better suited for studying complex human behaviors.

View Article and Find Full Text PDF

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with an unclear pathogenesis to date. Neurofeedback (NFB) had shown therapeutic effects in patients with ASD. In this study,we analyzed the brain functional networks of children with ASD and investigated the impact of NFB targeting the beta rhythm training on these networks.

View Article and Find Full Text PDF

Traffic-related air pollution (TRAP) exposure, lung function, airway inflammation and expiratory microbiota: A randomized crossover study.

Ecotoxicol Environ Saf

January 2025

College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

Traffic-related air pollution (TRAP) has been linked with numerous respiratory diseases. Recently, lung microbiome is proposed to be characterized with development and progression of respiratory diseases. However, the underlying effects of TRAP exposure on lung microbiome are rarely explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!